ChemComm
Communication
Various approaches to chromophore extension via the fusion of
perylene units onto acenes have been reported recently, including
the lateral fusion of perylenediimides via an ethylene bridge to
diperyleno-naphthalene-tetraimides 15,6 or via a benzene bridge to
diperyleno-anthracene-tetraimides 16.7 In these cases, the batho-
chromic shift of the longest-wavelength absorption peak with
respect to the corresponding PTCDIs is modest (19 nm for 15 and
36 nm for 16, compared to 117 nm for 14) (Fig. 3). Our approach is
much more efficient in inducing longer wavelength absorption and
thus a smaller band gap than the joining of electron-deficient
perylene-diimides by non-electron-depleting acene units.
In summary, our methodology based on the glyoxylic Perkin
reaction provides a short and straightforward synthetic access
to dimers of polycyclic arenes fused by a central tetracarboxy-
anthracene moiety. The diimide derivatives absorb strongly batho-
chromically compared to the homologous tetraesters and to
acene-fused PTCDI dimers, and thus represent a superior alternative
to fusion of PTCDIs onto unsubstituted acenes as a means to impart
smaller band gaps in electron deficient extended arene systems.
This research was financed partially by CNRS and ERASMUS
MUNDUS (external co-operation window with Asia) grants. We are
grateful to Pierre Dechambenoit for the collection and treatment of
Fig. 2 Absorption spectra of dipyrenoanthracenes 11 & 13 (top) and diperyleno-
anthracenes 12 & 14 (bottom), 20 mM in CHCl3 (14: in 4:1 CHCl3 :Cl2CHCHCl2). Grey:
tetraesters 11 and 12, black: diimides 13 and 14.
´
the crystallographic data and to Rodolphe Clerac for his continuous
support.
the main long-wavelength absorption peak from 447 nm to 575 nm
(in CHCl3, Fig. 2, top). This can be compared with the shift of 66 nm
from PTCDA-derived orange tetraalkylesters (470 nm (ref. 25)) to
their corresponding red bis(dialkylmethyl)imides (526 nm (ref. 26)).
Similarly, tetraester 12 and 12-aminotricosane give diimide 14 in
89% yield, and here the colour change is even more striking, as red
12 transforms into deep green 14, with a 132 nm shift of the longest-
wavelength peak from 511 nm to 643 nm (Fig. 2, bottom), approach-
ing the value of phthalocyanine (699 nm (ref. 27)).
Notes and references
1 E. Kozma and M. Catellani, Dyes Pigm., 2013, 98, 160.
2 T. Hassheider, S. A. Benning, H.-S. Kitzerow, M.-F. Achard and
H. Bock, Angew. Chem., Int. Ed., 2001, 40, 2060.
3 I. Seguy, P. Jolinat, P. Destruel, R. Mamy, H. Allouchi, C. Courseille,
M. Cotrait and H. Bock, ChemPhysChem, 2001, 2, 448.
4 E. Clar, Polycyclic Hydrocarbons, Academic Press and Springer-Verlag,
London-New York, Berlin-Gottingen-Heidelberg, 1964.
¨
5 H. Qian, F. Negri, C. Wang and Z. Wang, J. Am. Chem. Soc., 2008,
130, 17970.
6 Y. Li, C. Wang, C. Li, S. Di Motta, F. Negri and Z. Wang, Org. Lett.,
2012, 14, 5278.
7 Z. Yuan, Y. Xiao and X. Qian, Chem. Commun., 2012, 46, 2772.
8 T. Rosen, Iridium Complexes Org. Synth., 1991, 2, 395.
9 C. F. Koelsch and S. Wawzonek, J. Org. Chem., 1941, 6, 684.
10 L. Nassar-Hardy, C. Deraedt, E. Fouquet and F.-X. Felpin, Eur. J. Org.
Chem., 2011, 4616.
11 Friedel–Crafts and related reactions, III: Acylation and related reactions,
ed. G. A. Olah, Interscience Publishers, New York–London–Sydney, 1964.
12 G. Lock, Monatsh. Chem., 1955, 86, 511.
13 F. F. Blicke and R. F. Feldkamp, J. Am. Chem. Soc., 1944, 66, 1087.
14 G. Lock and R. Schneider, Chem. Ber., 1955, 88, 564.
15 R. G. Micetich, Org. Prep. Proced., 1970, 2, 249.
16 D. G. Cooper, I. T. Forbes, V. Garzya, D. J. Johnson, G. I. Stevenson
and P. A. Wyman, PCT Int. Appl. WO, 2009037294, 2009.
17 E. K. Fields, S. J. Behrend, S. Meyerson, M. L. Winzenburg,
B. R. Ortega and H. K. Hall Jr., J. Org. Chem., 1990, 55, 5165.
18 C. L. Hewett, J. Chem. Soc., 1938, 1286.
With diperylenoanthracene, already the red tetraester 12 showed
only a limited solubility even though we resorted to using relatively
long octyl chains, compared to the dipyrenoanthracene analogue 11,
and the green diimide 14 is only very sparingly soluble in hot
chloroform in spite of the presence of four undecyl side chains. It is
more soluble in boiling ortho-dichlorobenzene or 1,1,2,2-tetrachloro-
ethane. The striking decrease in solubility from dipyrenoanthra-
cenes 11 and 13, with 42 carbon atoms in the polycyclic graphene
segment, to diperylenoanthracenes 12 and 14, with 50 carbons,
parallels the dramatic decrease in solubility with increasing gra-
phene segment size reported for the rylene-dialkylimide series.22,23
19 J. Kelber, H. Bock, O. Thiebaut, E. Grelet and H. Langhals, Eur. J.
Org. Chem., 2011, 707.
20 P. Sarkar, P. Dechambenoit, F. Durola and H. Bock, Asian J. Org. Chem.,
2012, 1, 366.
21 J. Kelber, M.-F. Achard, B. Garreau-de Bonneval and H. Bock, Chem.–Eur.
J., 2011, 17, 8145.
22 N. G. Pschirer, C. Kohl, F. Nolde, J. Qu and K. Mu¨llen, Angew. Chem.,
Int. Ed., 2006, 45, 1401.
23 F. Nolde, W. Pisula, S. Mu¨ller, C. Kohl and K. Mu¨llen, Chem. Mater.,
2006, 18, 3715.
24 Z. Yuan, Y. Xiao, Y. Yang and T. Xiong, Macromolecules, 2011, 44, 1788.
25 M. J. Yang, S. L. Lu and Y. Li, J. Mater. Sci. Lett., 2003, 22, 813.
26 H. Langhals, Helv. Chim. Acta, 2005, 88, 1309.
27 J. H. Sharp and M. Lardon, J. Phys. Chem., 1968, 72, 3230.
Fig. 3 Swallow-tailed perylene-tetracarboxylic diimide (PTCDI) and naphthalene-
or anthracene-fused PTCDI dimers 15 and 16, with wavelengths of their longest-
wavelength absorption maxima in chloroform or DCM;6,7 14: 643 nm; R = n-alkyl.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.