Journal of the American Chemical Society
Communication
formation of the Co−Co bond may assist in releasing the
[N2(SiMe3)3]− product.
ACKNOWLEDGMENTS
■
The authors thank Dr. Maria Miranda and Prof. Bill Tolman for
GC-MS access, Andreas Goebels for magnetic data, and Yuxuan
Chen for DFT help. This work was supported as part of the
Inorganometallic Catalyst Design Center, an EFRC funded by
the DOE, Office of Basic Energy Sciences (DE-SC0012702).
C.C.L. is a Sloan Fellow. R.B.S. was supported by an NSF
graduate fellowship. XRD experiments were performed using a
crystal diffractometer (NSF-MRI, CHE-1229400) under the
direction of Dr. Vic Young, Jr.
Considering the bimetallic nature of the catalyst, it is intriguing
to examine the role of the second cobalt, CoN. The supporting
metal clearly affects the overall catalysis, as substituting Co with
Al yields an isostructural Co−Al bimetallic that is less active by
6.5 times. The Co oxidation states and the nature of the Co−M
bonds are quite different between these two systems. For the
Co−Al system, the (CoM)3+ and (CoM)2+ species are consistent
with Co(0)Al(III) and Co(−I)Al(III),5a whereas in dicobalt,
they are better described as Co(I)Co(II) and Co(0)Co(II). In
[Co(N2)AlL]−, a strong inverse dative bond is present, Co(−I)
→ Al(III), whereas in [Co2(N2)L]−, the cobalt centers are
weakly interacting. The Lewis acidic Al(III) metalloligand
suppresses the catalytic activity at Co, and this is consistent
with the electronic trend that increasingly basic phosphine
ligands increase TON (Table 1, entries 4−6). Hence, the
supporting metal can effectively tune the electron density at the
active cobalt center, where Al(III) and Co(II) represent two
electronic extremes of a metalloligand.
Though CoN is potentially redox-active, our calculations show
that this is not the case here (SI Figure 24). In the mechanism,
CoP cycles between Co(0) and Co(II) in discrete one-electron
steps, while CoN maintains a constant oxidation state of +2 and S
= 3/2. Although the reducing equivalents are stored only at the
active cobalt, CoN plays a significant role in stabilizing various
CoP(N2(SiMe3)x) (x = 0 to 2) intermediates, similar to the
postulated mechanism of Rh2-catalyzed diazo-transfer reac-
tions.15 Indeed, the Co−Co interaction increasingly weakens
as N2 binds and is functionalized to disilylhydrazido D, wherein
the metal−metal bond is fully cleaved (SI Table 11). In the final
step, the release of trisilylhydrazide is concomitant with Co−Co
and Co−P bond formations.
Our study demonstrates that cobalt compounds can be
effective catalysts for N2 functionalization to N(SiMe3)3. The
dicobalt system gives high TON while operating at 299 K and at
low-catalyst loading. Additional experiments support the
homogeneity of the active species. The catalysis is nearly 7-fold
faster using KC8 as a reductant, relative to K metal, likely because
of the larger surface area in the former. We further demonstrate
an interesting bimetallic strategy to electronically tune the active
center through variation of the supporting metal atom. The
Co(II) metalloligand was critical to achieve high TONs,
suggesting that the traditional mode of tuning activity through
the ancilliary ligands (phosphines) may have a more limited
effect than changing an ancillary metal (Al for Co). In future
research, we will explore this idea by developing an isostructural
family of Co-M bimetallics for catalytic N2 silylation, where the
ancilliary metal is systematically varied.
REFERENCES
■
(1) (a) Belyi, V. I.; Vasilyeva, L. L.; Ginkover, A. S.; Gritsenko, V. A.;
Repinsky, S. M.; Sinitsa, S. P.; Smirnova, T. P.; Edelman, F. L. Silicon
Nitride in Electronics; Elsevier: Amsterdam, 1998. (b) Riley, F. L. J. Am.
Ceram. Soc. 2000, 83, 245. (c) Nishi, Y.; Doering, R. Handbook of
Semiconductor Manufacturing Technology; Marcel Dekker, Inc.: New
York, 2000.
(2) (a) Komori, K.; Oshita, H.; Mizobe, Y.; Hidai, M. J. Am. Chem. Soc.
1989, 111, 1939. (b) Shiina, K. J. Am. Chem. Soc. 1972, 94, 9266.
́
(c) Liao, Q.; Saffon-Merceron, N.; Mezailles, N. Angew. Chem., Int. Ed.
2014, 53, 14206. (d) Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.;
Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. J. Am. Chem.
Soc. 2011, 133, 3498. (e) Yuki, M.; Tanaka, H.; Sasaki, K.; Miyake, Y.;
Yoshizawa, K.; Nishibayashi, Y. Nat. Commun. 2012, 3, 1254. (f) Mori,
M. J. Organomet. Chem. 2004, 689, 4210. (g) Ung, G.; Peters, J. C.
Angew. Chem. Int. Ed. 2015, 54, 532.
(3) (a) Hazari, N. Chem. Soc. Rev. 2010, 39, 4044. (b) Hoffman, B. M.;
Lukoyanov, D.; Yang, Z.-Y.; Dean, D. R.; Seefeldt, L. C. Chem. Rev. 2014,
114, 4041. (c) Leigh, G. J. Haber-Bosch and Other Industrial Processes.
In Catalysts for Nitrogen Fixation, Smith, B. E., Richards, R. L., Newton,
W. E., Eds.; Kluwer Academic: Dordrecht, 2004; Vol. 1, pp 33. (d) Hidai,
M. Coord. Chem. Rev. 1999, 185−186, 99. (e) Schrock, R. R. Acc. Chem.
Res. 2005, 38, 955. (f) Arashiba, K.; Miyake, Y.; Nishibayashi, Y. Nat.
Chem. 2011, 3, 120. (g) Anderson, J. S.; Rittle, J.; Peters, J. C. Nature
2013, 501, 84.
(4) (a) Powers, T. M.; Betley, T. A. J. Am. Chem. Soc. 2013, 135, 12289.
(b) Moret, M.-E.; Peters, J. C. J. Am. Chem. Soc. 2011, 133, 18118.
(5) (a) Rudd, P. A.; Liu, S.; Gagliardi, L.; Young, V. G., Jr.; Lu, C. C. J.
Am. Chem. Soc. 2011, 133, 20724. (b) Clouston, L. J.; Siedschlag, R. B.;
Rudd, P. A.; Planas, N.; Hu, S.; Miller, A. D.; Gagliardi, L.; Lu, C. C. J.
Am. Chem. Soc. 2013, 135, 13142.
(6) Amatore, C.; Saveant, J. M. J. Electroanal. Chem. 1978, 86, 227.
(7) Holland, P. L. Dalton Trans. 2010, 39, 5415.
(8) Pauling, L. J. Am. Chem. Soc. 1947, 69, 542.
(9) Rudd, P. A.; Planas, N.; Bill, E.; Gagliardi, L.; Lu, C. C. Eur. J. Inorg.
Chem. 2013, 2013, 3898.
(10) (a) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 10782.
(b) Ding, K.; Pierpont, A. W.; Brennessel, W. W.; Lukat-Rodgers, G.;
Rodgers, K. R.; Cundari, T. R.; Bill, E.; Holland, P. L. J. Am. Chem. Soc.
2009, 131, 9471. (c) Greenwood, B. P.; Forman, S. I.; Rowe, G. T.;
Chen, C. H.; Foxman, B. M.; Thomas, C. M. Inorg. Chem. 2009, 48,
6251.
(11) (a) Crabtree, R. H. Chem. Rev. 2012, 112, 1536. (b) Windegren, J.
A.; Finke, R. G. J. Mol. Catal. A: Chem. 2003, 198, 317.
(12) Using the same concentration with double the volume (80 mL),
the split-filtrate fraction of 40 mL can be directly compared to Table 1.
(13) Weatherburn, M. W. Anal. Chem. 1967, 39, 971.
(14) We verified the TOF by working up a standard catalysis at t = 1 h.
By GC-MS, TON = 74 (or TOF of 1.2 N(SiMe3)3/min).
(15) (a) Padwa, A.; Snyder, J. P.; Curtis, E. A.; Sheehan, S. M.;
Worsencroft, K. J.; Kappe, C. O. J. Am. Chem. Soc. 2000, 122, 8155.
(b) Pirrung, M. C.; Liu, H.; Morehead, A. T., Jr. J. Am. Chem. Soc. 2002,
124, 1014.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental/theoretical methods and data are provided
(CCDC 962873−962875). This material is available free of
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX