ꢀꢀꢀꢁ
10ꢁ
ꢁK. Sünkel et al.: Synthesis, molecular, and crystal structures of 3d transition metal cyanocyclopentadienides
[2] S. Benmansour, C. Atmani, F. Setifi, S. Triki, M. Marchivie,
7c′: From 34 mg ZnCl2 a yield of 90 mg (85%) was
C. J. Gómez-García, Coord. Chem. Rev. 2010, 254, 1468.
[3] S. R. Batten, K. S. Murray. Coord. Chem. Rev. 2003, 246, 103.
[4] S. R. Batten, B. F. Hoskins, B. Moubaraki, K. S. Murray,
R. Robson, J. Chem. Soc. Dalton Trans. 1999, 2977.
[5] O. Reckeweg, A. Schulz, F. J. DiSalvo, Z. Naturforsch. 2015, 70b,
177.
obtained (yellow powder). –C18.5H14N10ZnO4.5(513.7): calcd.
C 43.25, H 2.75, N 27.25; found C 43.73, H 2.72, N 27.42.
3.3 Crystal structure determination
[6] C. Nitschke, M. Köckerling, Z. Anorg. Allg. Chem. 2009, 635,
503.
Most details of the crystallographic studies are collected
and shown in Table 6. All crystals except for 3a (Bruker D8
Quest) were measured using a Bruker D8 Venture instru-
ment (Bruker AXS, Karlsruhe, Germany). Cell determina-
tion and refinement, data processing, and absorption
correction were performed with the respective diffractom-
eter software. The program package Wingx was used for
structure solution and refinement as well as for structure
evaluation, production of the CIFs, and crystallographic
tables [21–25]. Nearly all structures were solved using
Shelxt; the structures of 3a (Sir97) and 6b (Sir2014) were
solved by different programs. All structures were refined
with Shelxl (version2014/7). The crystals of 2c turned out
to be twinned and were, therefore, refined with the HKLF5
dataset (BASFꢀ=ꢀ0.458; twin matrix: –1.001 –0.001 –0.005;
0.012 –1.000 0.008; 0.361 –0.002 1.001).
[7] C. Nitschke, M. Köckerling, Inorg. Chem. 2011, 50, 4313.
[8] S. Triki, J. S. Pala, M. Decoster, P. Molinié, L. Toupet, Angew.
Chem. Int. Ed. 1999, 38, 113.
[9] A. M. Kutasi, D. R. Turner, P. Jensen, B. Moubaraki, S. R. Batten,
K. S. Murray, Inorg. Chem. 2011, 50, 6673.
[10] J. A. Schlueter, U. Geiser, J. L. Manson, Acta Crystallogr. 2003,
C59, m1.
[11] E. Lefebvre, F. Conan, N. Cosquer, J.-M. Kerbaol, M. Marchivie,
J. Sala-Pala, M. M. Kubicki, E. Vigier, C. J. Gómez-García, New J.
Chem. 2006, 30, 1197.
[12] Q. Li, Y. Wang, P. Yan, G. Hou, G. Li, Inorg. Chim. Acta 2014, 413,
32.
[13] S. I. Gurskiy, V. A. Tafeenko, CrystEngComm 2012, 14, 2721.
[14] J. C. Bullinger, D. M. Eichhorn, Inorg. Chim. Acta 2009, 362,
4510.
[15] O. W. Webster, United States Patent 3,835,943, 1974.
[16] O. W. Webster, J. Am. Chem. Soc. 1966, 88, 4055.
[17] R. E. Christopher, L. M. Venanzi, Inorg. Chim. Acta 1973, 7, 489.
[18] R. J. Less, T. C. Wilson, M. McPartlin, P. T. Wood, D. S. Wright,
Chem. Commun. 2011, 47, 10007.
[19] K. Sünkel, D. Reimann, Z. Naturforsch. 2013, 68b, 546.
[20] P. R. Nimax, K. Sünkel, ChemistrySelect 2018, 3, 3330.
[21] L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.
[22] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock,
G. P. Shields, R. Taylor, M. Towler, J. van derStreek,
J. Appl. Crystallogr. 2006, 39, 453.
The Cambridge Crystallographic Data Center (CCDC)
1862594–1862602 (see Table 6) contains the supplemen-
tary crystallographic data for this paper. These data can
be obtained free of charge from the CCDC via www.ccdc.
[23] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
[24] G. M. Sheldrick, ActaCrystallogr. 2008, A64, 112.
[25] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano,
C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori,
R. J. Spagna, J. Appl. Crystallogr. 1999, 32, 115.
References
[1] D. R. Turner, A. S. R. Chesman, K. S. Murray, G. B. Deacon, S. R.
Batten, Chem. Commun. 2011, 47, 10189.
Brought to you by | Göteborg University - University of Gothenburg
Authenticated
Download Date | 11/30/18 6:25 PM