Journal of the American Chemical Society
Page 6 of 8
(
7)
Butkevich, A. N.; Lukinavičius, G.; D’Este, E.; Hell, S. W. Cell-
Permeant Large Stokes Shift Dyes for Transfection-Free
Multicolor Nanoscopy. J Am Chem Soc 2017, 139, 12378–
Resolution Microscopy. Angew. Chem., Int. Ed. 2016, 128
(5), 1755–1759.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(22)
(23)
(24)
Macdonald, P. J.; Gayda, S.; Haack, R. A.; Ruan, Q.;
Himmelsbach, R. J.; Tetin, S. Y. Rhodamine-Derived
Fluorescent Dye with Inherent Blinking Behavior for Super-
Resolution Imaging. Anal. Chem. 2018, 90 (15), 9165–9173.
He, H.; Ye, Z.; Zheng, Y.; Xu, X.; Guo, C.; Xiao, Y.; Yang, W.;
Qian, X.; Yang, Y. Super-Resolution Imaging of Lysosomes
with a Nitroso-Caged Rhodamine. Chem. Commun. 2018,
54 (23), 2842–2845.
Takakura, H.; Zhang, Y.; Erdmann, R. S.; Thompson, A. D.;
Lin, Y.; McNellis, B.; Rivera-Molina, F.; Uno, S.; Kamiya, M.;
Urano, Y.; Rothman, J. E.; Bewersdorf, J.; Schepartz, A.;
Toomre, D. Long Time-Lapse Nanoscopy with
Spontaneously Blinking Membrane Probes. Nat.
Biotechnol. 2017, 35, 773–780.
Qi, Q.; Chi, W.; Li, Y.; Qiao, Q.; Chen, J.; Miao, L.; Zhang, Y.;
Li, J.; Ji, W.; Xu, T.; Liu, X.; Yoon, J.; Xu, Z. A H-Bond Strategy
to Develop Acid-Resistant Photoswitchable Rhodamine
Spirolactams for Super-Resolution Single-Molecule
Localization Microscopy. Chem. Sci. 2019, 10 (18), 4914–
4922.
Mitronova, G. Y.; Belov, V. N.; Bossi, M. L.; Wurm, C. A.;
Meyer, L.; Medda, R.; Moneron, G.; Bretschneider, S.;
Eggeling, C.; Jakobs, S.; Hell, S. W. New Fluorinated
Rhodamines for Optical Microscopy and Nanoscopy.
Chem. – A Eur. J. 2010, 16 (15), 4477–4488.
Vogel, M.; Rettig, W.; Sens, R.; Drexhage, K. H. Structural
Relaxation of Rhodamine Dyes with Different N-
Substitution Patterns: A Study of Fluorescence Decay
Times and Quantum Yields. Chem. Phys. Lett. 1988, 147 (5),
452–460.
Chang, T.-L.; Cheung, H. C. A Model for Molecules with
Twisted Intramolecular Charge Transfer Characteristics:
Solvent Polarity Effect on the Nonradiative Rates of Dyes
in a Series of Water—Ethanol Mixed Solvents. Chem. Phys.
Lett. 1990, 173 (4), 343–348.
Chang, T.; Borst, W. L. Effect of Solvent Polarity on a
Rotational Isomerization Mechanism of Rhodamine-B in
Normal Alcohols. J. Chem. Phys. 1990, 93 (7), 4724–4729.
Casey, K. G.; Quitevis, E. L. Effect of Solvent Polarity on
Nonradiative Processes in Xanthene Dyes: Rhodamine B in
Normal Alcohols. J. Phys. Chem. 1988, 92 (23), 6590–6594.
Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Structural
Changes Accompanying Intramolecular Electron Transfer:
Focus on Twisted Intramolecular Charge-Transfer States
and Structures. Chem. Rev. 2003, 103 (10), 3899–4032.
Grimm, J. B.; Muthusamy, A. K.; Liang, Y.; Brown, T. A.;
Lemon, W. C.; Patel, R.; Lu, R.; Macklin, J. J.; Keller, P. J.; Ji,
N.; Lavis, L. D. A General Method to Fine-Tune
Fluorophores for Live-Cell and in Vivo Imaging. Nat.
Methods 2017, 14 (10), 987.
12381.
(
(
8)
9)
Butkevich, A. N.; Bossi, M. L.; Lukinavičius, G.; Hell, S. W.
Triarylmethane Fluorophores Resistant to Oxidative
Photobluing. J. Am. Chem. Soc. 2019, 141 (2), 981–989.
Fölling, J.; Belov, V.; Kunetsky, R.; Medda, R.; Schönle, A.;
Egner, A.; Eggeling, C.; Bossi, M.; Hell, S. W. Photochromic
Rhodamines Provide Nanoscopy with Optical Sectioning.
Angew. Chem., Int. Ed. 2007, 46 (33), 6266–6270.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(10)
Carlini, L.; Manley, S. Live Intracellular Super-Resolution
Imaging Using Site-Specific Stains. ACS Chem. Biol. 2013,
8
(12), 2643–2648.
(
11)
Grimm, J. B.; English, B. P.; Chen, J.; Slaughter, J. P.; Zhang,
Z.; Revyakin, A.; Patel, R.; Macklin, J. J.; Normanno, D.;
Singer, R. H.; Lionnet, T.; Lavis, L. D. A General Method to
Improve Fluorophores for Live-Cell and Single-Molecule
Microscopy. Nat. Methods 2015, 12, 244–250.
Legant, W. R.; Shao, L.; Grimm, J. B.; Brown, T. A.; Milkie, D.
E.; Avants, B. B.; Lavis, L. D.; Betzig, E. High-Density Three-
Dimensional Localization Microscopy across Large
Volumes. Nat. Methods 2016, 13 (4), 359–365.
Grimm, J. B.; English, B. P.; Choi, H.; Muthusamy, A. K.;
Mehl, B. P.; Dong, P.; Brown, T. A.; Lippincott-Schwartz, J.;
Liu, Z.; Lionnet, T.; Lavis, L. D. Bright Photoactivatable
Fluorophores for Single-Molecule Imaging. Nat. Methods
2016, 13, 985–988.
Takakura, H.; Zhang, Y.; Erdmann, R. S.; Thompson, A. D.;
Lin, Y.; McNellis, B.; Rivera-Molina, F.; Uno, S.; Kamiya, M.;
Urano, Y.; Rothman, J. E.; Bewersdorf, J.; Schepartz, A.;
Toomre, D. Long Time-Lapse Nanoscopy with
Spontaneously Blinking Membrane Probes. Nat.
Biotechnol. 2017, 35, 773–780.
He, H.; Ye, Z.; Xiao, Y.; Yang, W.; Qian, X.; Yang, Y. Super-
Resolution Monitoring of Mitochondrial Dynamics upon
Time-Gated Photo-Triggered Release of Nitric Oxide. Anal.
Chem. 2018, 90 (3), 2164–2169.
Ye, Z.; Yu, H.; Yang, W.; Zheng, Y.; Li, N.; Bian, H.; Wang, Z.;
Liu, Q.; Song, Y.; Zhang, M.; Xiao, Y. Strategy to Lengthen
the On-Time of Photochromic Rhodamine Spirolactam for
Super-Resolution Photoactivated Localization Microscopy.
J. Am. Chem. Soc. 2019, 141 (16), 6527–6536.
Uno, S.; Kamiya, M.; Yoshihara, T.; Sugawara, K.; Okabe, K.;
Tarhan, M. C.; Fujita, H.; Funatsu, T.; Okada, Y.; Tobita, S.;
Urano, Y. A Spontaneously Blinking Fluorophore Based on
Intramolecular Spirocyclization for Live-Cell Super-
Resolution Imaging. Nat. Chem. 2014, 6, 681–689.
Uno, S.; Kamiya, M.; Morozumi, A.; Urano, Y. A Green-
Light-Emitting, Spontaneously Blinking Fluorophore Based
on Intramolecular Spirocyclization for Dual-Colour Super-
Resolution Imaging. Chem. Commun. 2018, 54 (1), 102–
(25)
(12)
(26)
(27)
(28)
(
13)
(14)
(
(
15)
16)
(29)
(30)
(31)
(
(
(
17)
18)
19)
(32)
(33)
105.
Liu, X.; Qiao, Q.; Tian, W.; Liu, W.; Chen, J.; Lang, M. J.; Xu, Z.
Aziridinyl Fluorophores Demonstrate Bright Fluorescence
and Superior Photostability by Effectively Inhibiting
Twisted Intramolecular Charge Transfer. J. Am. Chem. Soc.
2016, 138 (22), 6960–6963.
Ye, Z.; Xiao, Y.; Guo, H.; Wang, C. Specific and Photostable
Rhodamine-Based Tracker for 3D Video Imaging of Single
Acidic Organelles. RSC Adv. 2014, 4 (71), 37547.
Bassolino, G.; Nançoz, C.; Thiel, Z.; Bois, E.; Vauthey, E.;
Rivera-Fuentes, P. Photolabile Coumarins with Improved
Efficiency through Azetidinyl Substitution. Chem. Sci. 2018.
Banterle, N.; Bui, K. H.; Lemke, E. A.; Beck, M. Fourier Ring
Pan, D.; Hu, Z.; Qiu, F.; Huang, Z.-L.; Ma, Y.; Wang, Y.; Qin,
L.; Zhang, Z.; Zeng, S.; Zhang, Y.-H. A General Strategy for
Developing Cell-Permeable Photo-Modulatable Organic
Fluorescent Probes for Live-Cell Super-Resolution Imaging.
Nat. Commun. 2014, 5, 5573.
Kiuchi, T.; Higuchi, M.; Takamura, A.; Maruoka, M.;
Watanabe, N. Multitarget Super-Resolution Microscopy
with High-Density Labeling by Exchangeable Probes. Nat.
Methods 2015, 12 (8), 743–746.
(34)
(35)
(36)
(
(
20)
21)
Grimm, J. B.; Klein, T.; Kopek, B. G.; Shtengel, G.; Hess, H. F.;
Sauer, M.; Lavis, L. D. Synthesis of a Far-Red
Photoactivatable Silicon-Containing Rhodamine for Super-
ACS Paragon Plus Environment