organic compounds
(CON), 138.2 (Ci), 129.5 (Cm), 125.4 (Cp), 121.2 (Co), 63.0 (CH2), 14.5
(CH3). Crystals suitable for X-ray analysis were obtained by slow
crystallization from toluene. The melting point was measured on an
electrothermal IA 9100 apparatus and was left uncorrected. The IR
spectrum was recorded using a Perkin±Elmer 16 F PC IR spectro-
photometer, and the NMR spectra were recorded using a Varian
Mercury 300 MHz instrument.
Crystal data
C10H11NO3
Mr = 193.20
Triclinic, P1
a = 7.8033 (5) A
b = 10.6424 (7) A
Z = 4
Dx = 1.351 Mg m
Mo Kꢁ radiation
3
Ê
Cell parameters from 600
re¯ections
Ê
Ê
c = 13.2432 (9) A
ꢄ = 20±25ꢀ
ꢅ = 0.10 mm
T = 100 (2) K
1
ꢁ = 108.491 (1)ꢀ
ꢂ = 96.081 (1)ꢀ
ꢃ = 110.165 (1)ꢀ
Rhombohedral, colourless
0.50 Â 0.47 Â 0.43 mm
3
Ê
V = 950.03 (11) A
Data collection
Figure 3
Assembly of parallel [123] layers along the [012] direction.
Bruker SMART area-detector
diffractometer
Rint = 0.025
ꢄmax = 27.0ꢀ
' and ! scans
h = 9 ! 9
Â
reactivity of these systems (Padilla-Martõnez et al., 2001). As a
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Tmin = 0.952, Tmax = 0.967
10 719 measured re¯ections
4107 independent re¯ections
3637 re¯ections with I > 2ꢆ(I)
k = 13 ! 13
l = 16 ! 16
result of the lack of conjugation along the ethyl oxamate
group, intramolecular hydrogen bonding should contribute to
the planarity of the system, allowing the formation of the two
adjacent S(5) (N7ÐH7Á Á ÁO9) and S(6) (C6ÐH6Á Á ÁO8) ring
motifs (Bernstein et al., 1995) indicated in the Scheme.
100 standard re¯ections
frequency: 1 min
intensity decay: 5%
The hydrogen-bonding geometry is listed in Table 2. The
two types of molecules can form AÁ Á ÁB pairs through
intermolecular three-centred O8Á Á ÁH5Á Á ÁO10 hydrogen
bonds, thus forming R21(5)[DaDb] and R21(5)[DcDd] rings.
Alternatively, two molecules of the same kind can form AÁ Á ÁA0
and BÁ Á ÁB0 pairs through intermolecular hydrogen bonding in
the form of soft C2ÐH2Á Á ÁO9 and hard N7ÐH7Á Á ÁO9
(Desiraju, 1996) interactions, thus forming R12(6)[DeDf] and
R12(6)[DgDh] ring motifs. By symmetry, the self-complemen-
tary R22(10)[De] and R22(10)[Dg] ring motifs appear (Fig. 2).
The R12(6) ring motif seems to be the characteristic motif for
these systems, since it has been found for other non-substi-
Table 1
Selected geometric parameters (A, ).
ꢀ
Ê
O8AÐC8A
O9AÐC9A
O10AÐC9A
O10AÐC11A
N7AÐC1A
N7AÐC8A
C8AÐC9A
1.2165 (16) O8BÐC8B
1.2116 (17)
1.2063 (16) O9BÐC9B
1.3209 (16) O10BÐC9B
1.4586 (16) O10BÐC11B
1.4173 (17) N7BÐC1B
1.3470 (17) N7BÐC8B
1.5421 (19) C8BÐC9B
1.2078 (16)
1.3161 (16)
1.4639 (16)
1.4193 (17)
1.3488 (17)
1.5436 (19)
O8AÐC8AÐC9AÐO9A 174.99 (13) O8BÐC8BÐC9BÐO9B
N7AÐC1AÐC2AÐC3A 178.05 (12) N7BÐC1BÐC2BÐC3B
171.89 (13)
179.44 (12)
16.2 (2)
C6AÐC1AÐN7AÐC8A
N7AÐC1AÐC6AÐC5A 177.86 (12) N7BÐC1BÐC6BÐC5B
13.6 (2)
C6BÐC1BÐN7BÐC8B
179.07 (12)
Â
Â
tuted aromatic oxamates (Garcõa-Baez et al., 2003), whereas
the R22(10) motif is typical for aliphatic oxamides (Nguyen et
al., 2001). The resulting parallel [123] layers are linked via CÐ
HÁ Á Áꢀ(arene) interactions (Umezawa et al., 1998). The CH3
(molecule A) and CH2 (molecule B) moieties are hydrogen
bonded to the phenyl ring of molecule A (C12AÐ
H12BÁ Á ÁCg1 and C11BÐH11DÁ Á ÁCg1, respectively; Cg1 is the
centroid of the C1A±C6A ring), thus forming a staircase motif
that completes the three-dimensional structure along the (012)
direction (Fig. 3).
Table 2
Hydrogen-bonding geometry (A, ).
ꢀ
Ê
Cg1 is the centroid of the C1A±C6A ring.
DÐHÁ Á ÁA
DÐH
HÁ Á ÁA
DÁ Á ÁA
DÐHÁ Á ÁA
N7AÐH7AÁ Á ÁO9Ai
N7BÐH7BÁ Á ÁO9Bii
N7AÐH7AÁ Á ÁO9A
N7BÐH7BÁ Á ÁO9B
C6AÐH6AÁ Á ÁO8A
C6BÐH6BÁ Á ÁO8B
C5AÐH5AÁ Á ÁO8Biii
C5BÐH5BÁ Á ÁO8Aiv
C5AÐH5AÁ Á ÁO10Biii
C5BÐH5BÁ Á ÁO10Aiv
C2AÐH2AÁ Á ÁO9Ai
C2BÐH2BÁ Á ÁO9Bii
C11BÐH11DÁ Á ÁCg1v
C12AÐH12AÁ Á ÁCg1vi
0.88
0.88
0.88
0.88
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.95
0.99
0.98
2.24
2.36
2.30
2.29
2.31
2.32
2.67
2.70
2.72
2.62
2.55
2.51
2.79
2.62
3.0867 (17)
3.1410 (18)
2.7168 (16)
2.7059 (16)
2.8974 (18)
2.9004 (18)
3.294 (2)
161
148
109
109
120
119
124
125
160
175
140
146
149
146
Experimental
3.3418 (18)
3.622 (2)
Compound (I) was prepared from aniline (9.8 ml, 0.1 mol) and ethyl
chlorooxoacetate (12.0 ml, 0.1 mol) according to reported procedures
3.5669 (19)
3.3309 (19)
3.3385 (19)
3.6719 (17)
3.4703 (18)
Â
Â
(Martõnez-Martõnez et al., 1998), yielding, after crystallization from
hexane, a white solid (11.8 g; yield 60%; m.p. 347 K). IR (KBr, cm 1):
1
3345 (NH), 1708 (CO); H NMR (300.08 MHz, DMSO-d6, p.p.m.):
7.86 (d, 2H), 7.48 (t, 2H), 7.26 (t, 1H), 4.40 (q, 2H), 1.43 (t, 3H);
13C NMR (75.46 MHz, DMSO-d6, p.p.m.): 161.4 (COO), 156.2
Symmetry codes: (i)
1 x; 1 y; z; (v) x 1; y; z 1; (vi) x; y; 1 z.
1
x; y; 1 z; (ii)
x; 2 y; z; (iii) x; y; 1 z; (iv)
ꢁ
Â
Â
Â
o542 Efren V. Garcõa-Baez et al.
C10H11NO3
Acta Cryst. (2003). C59, o541±o543