M. Hanack et al.
FULL PAPER
([D8]THF, C6H5CF3 as reference): d À148.4 (m, 8F), À156.5 ppm (m,
8F). elemental analysis calcd (%) for C96H16Ga2F32N16O: C 53.50, H 0.75, N
10.40; found: C 51.02, H 0.94, N 9.26.
[9] M. Ravikanth, G. R. Kumar, Curr. Sci. 1995, 68, 1010.
[10] a) M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom,
R. G. S. Pong, Coord. Chem. Rev. 2001, 219 221, 235; b) J. W. Perry,
K. Mansour, I. Y. S. Lee, X. L. Wu, P. V. Bedworth, C. T. Chen, D. Ng,
S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, Science 1996, 273,
1533; c) M. Hanack, D. Dini, M. Barthel, S. Vagin, Chem. Rec. 2002, 2,
129; d) M. Barthel, D. Dini, S. Vagin, M. Hanack, Eur. J. Org. Chem.
2002, 3756.
Optical-limiting measurement: The optical-limiting experiments were
conducted by using a laser light with wavelength of 532 nm, a pulse
duration of 5 ns, and a repetition rate of 20 Hz. The pulses were generated
by a frequency-doubled Q-switched Nd/YAG laser. A small part of the
input beam was split by using a glass plate to monitor the input energy. The
major part of the laser beam was focused with a lens with a focal length of
250 mm, and the sample was placed near the focus point (ꢂ100 mm in
diameter). After propagation through the medium, the major portion of the
beam was collected by a photodiode detector. This allowed a direct
measurement of the nonlinear absorption properties. Other mechanisms
leading to light dispersion, such as photon diffusion or nonlinear refraction,
were not taken into account.[30] The transmission for each sample was
measured at several different incident fluences varying from 10 mJcmÀ2 to
4000 mJcmÀ2. The data points are obtained by averaging the measurements
of around 40 shots. The tested samples were prepared as solutions and all
had 75 Æ 1% of linear transmission at 532 nm. Their optical-limiting
performance at 532 nm was evaluated and compared based on their
limiting thresholds, which is defined as the average input fluence at which
the output fluence is 50% of what is predicted by the linear transmission.
C60 was included and was dissolved in toluene in a quartz cell with 1 mm
thickness. The rest of the samples were dissolved in THF and tested in the
same type of optical cells.
[11] L. W. Tutt, A. Kost, Opt. Lett. 1993, 18, 334.
[12] S. Shi, W. Ji, X. Q. Xin, Mater. Res. Soc. Proc. 1995, 374, 363.
[13] R. C. Hoffman, K. A. Stetyick, R. S. Potember, D. G. McLean, J. Opt.
Soc. Am. B 1989, 6, 772.
[14] D. Dini, M. Barthel, M. Hanack, Eur. J. Org. Chem. 2001, 3759.
[15] H. S. Nalwa, M. Hanack, G. Pawlowski, M. K. Engel, Chem. Phys.
1999, 245, 17.
[16] T. Schneider, H. Heckmann, M. Barthel, M. Hanack, Eur. J. Org.
Chem. 2001, 3055.
[17] J. S. Shirk, R. G. S. Pong, S. R. Flom, H. Heckmann, M. Hanack, J.
Phys. Chem. A, 2000, 104, 1438.
[18] M. Handa, A. Suzuki, S. Shoji, K. Kasuga, K. Sogabe, Inorg. Chim.
Acta 1995, 230, 41.
[19] Y. Chen, L. R. Subramanian, M. Barthel, M. Hanack, Eur. J. Inorg.
Chem. 2002, 1032.
[20] Y. Chen, L. R. Subramanian, M. Fujitsuka, O. Ito, S. O×Flaherty, W. J.
Blau, T. Schneider, D. Dini, M. Hanack, Chem. Eur. J. 2002, 8, 4248.
[21] Y. Chen, S. O×Flaherty, M. Fujitsuka, M. Hanack, L. R. Subramanian,
O. Ito, W. J. Blau, Chem. Mater. 2002, 14, 5163.
[22] Y. Chen, M. Barthel, M. Seiler, L. R. Subramanian, H. Bertagnolli, M.
Hanack, Angew. Chem. 2002, 114, 3373, Angew. Chem. Int. Ed. 2002,
41, 3239.
[23] D. D. Callander, P. L. Coe, J. C. Tatlow, A. J. Uff, Tetrahedron 1969, 25,
25.
[24] G. M. Priestley, R. N. Warrener, Tetrahedron Lett. 1972, 42, 4295.
[25] R. Faust, F. Mitzel, J. Chem. Soc. Perkin Trans. 1 2000, 3746.
[26] W. E. Ford, M. A. J. Rodgers, L. A. Schechtman, J. R. Sounik, B. D.
Rihter, M. E. Kenney, Inorg. Chem. 1992, 31, 3371.
Acknowledgement
We acknowledge the financial support for this work by DSONational
Laboratories (Singapore), Directorate of Research and Development
(Singapore), and Deutsche Forschungsgemeinschaft (Ha 280/165-1).
[1] T. H. Maiman, Nature 1960, 187, 493.
[27] a) M. Hanack, H. Heckmann, Eur. J. Inorg. Chem. 1998, 367; b) M.
Barthel, M. Hanack, J. Porphyrins Phthalocyanines 2000, 4, 635.
[28] Y. P. Sun, J. E. Riggs, Int. Rev. Phys. Chem. 1999, 18, 43.
[29] W. J. Su, T. M. Cooper, Chem. Mater. 1998, 10, 1212.
[30] E. W. Van Stryland, M. Sheik-Bahae, A. A. Said, D. J. Hagan, Prog.
Cryst. Growth Charact. 1993, 27, 279.
[2] S. G. Lambert, W. L. Casey, Laser Communications in Space, Artech
House, Boston, 1995.
[3] K. Schwartz, K. K. Shvarts, The Physics of Optical Recording,
Springer, Berlin, 1994.
[4] G. I. Vasilenko, L. M. Tsibulkin, A. Tybulewicz, Image Recognition by
Holography, Consultants Bureau, New York, 1989.
[31] M. Hercher, Appl. Opt. 1967, 6, 94.
[5] J. Bosenberg, D. Brassington, P. C. Simon, Instrument Development
for Atmospheric Research andMonitoring: Lidar Profiling , DOAS,
andTunable Diode Laser Spectroscopy , Springer, Berlin, 1997.
[6] L. J. Singerman, G. Coscas, Current Techniques in Ophthalmic Laser
Surgery, Butterworth Heinemann Medical, Oxford, 1999.
[7] B. Anderberg , M. L. Wolbarsht, Laser Weapons: The Dawn of a New
Military Age, Plenum, New York, 1992.
[32] The Q absorption band (lmax) of [(tBu4NcGa)2O] in CHCl3 is located
at: 803 nm (ref. [21]). When measured in THF and 1-chloronaphtha-
lene, [(tBu4NcGa)2O] shows lmax at 789 nm and 819 nm, respectively.
[33] D. Dini, M. Hanack, unpublished work.
[8] L. Tutt, T. Boggess, Prog. Quantum Electecron. 1993, 17, 299.
Received: December 18, 2002 [F4683]
2762
¹ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2003, 9, 2758 2762