Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
different sizes (Table S5, ESI†). The adsorption experiments Center, Huazhong University of Science and Technology, for
DOI: 10.1039/C9CC02405K
manifested that all of these MOFs exhibit the quick adsorption analysis and spectral measurements.
ability (Fig. 4, Figure S16, 18, ESI†), but with the different
+
adsorption degree for three cationic dyes. For MB , 91.1%, 91.3%
and 92% of dye concentration can be absorbed by the solid
Conflicts of interest
samples of 1-3 after 5 h, respectively, illustrating the excellent
adsorption abilities of these MOFs. For BV14 and R6G under
There are no conflicts to declare.
+
+
the same testing conditions, the adsorption ratio of 1-3 were
calculated to be 64%, 70.8%, and 75.8% as well as 35.8%, 50%, Notes and references
and 59.5%, respectively. The kinetic rate constants for the
adsorption of three dyes in 1-3 had been calculated, in
consistent with the marcoscopic phenomenons (Table S6, ESI†).
1
2
3
(a) S. Kitagawa and K. Uemura, Chem. Soc. Rev., 2005, 34, 109; (b) G.
Férey and C. Serre, Chem. Soc. Rev., 2009, 38, 1380; (c) H. C. Zhou, J.
R. Long and O. M. Yaghi, Chem. Rev., 2012, 112, 673.
(a) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch,
Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012, 112, 724; (b) J.-
R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 2012, 112, 869.
(a) L. Zhang, K. Jiang, L. Li, Y. Xia, T. Hu, Y. Yang, Y. Cui, B. Li, B. Chen
and G. Qian, Chem. Commun., 2018, 54, 4846; (b) K. Adil, Y.
Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt, A. H. Assen, G. Maurin
and M. Eddaoudi, Chem. Soc. Rev., 2017, 46, 3402.
The difference should be ascribed to the sized effect of dyes
+
(
Table S5, ESI†). The smallest MB molecules are able to easily
enter into the pore of these MOFs, which gives the largest
kinetic rate constant compared to other two dyes. In addition,
the largest pore dimension in 3 must be responsible for the
+
better adsorption efficiency towards the larger dyes as BV14
and R6G compared to 1 and 2.
4
(a) Y. Yang, C. Gao, H. Tian, J. Ai, X. Min and Z. Sun, Chem. Commun.,
+
2
018, 54, 1758; (b) J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C. Y.
Su, Chem. Soc. Rev., 2014, 43, 6011; (c) J. Baek, B. Rungtaweevoranit,
X. Pei, M. Park, S. C. Fakra, Y. Liu, R. Matheu, S. A. Alshmimri, S.
Alshehri, C. A. Trickett, G. A. Somorjai and O. M. Yaghi, J. Am. Chem.
Soc., 2018, 140, 18208.
5
6
(a) M. J. Katz, S. Moon, J. E. Mondloch, M. H. Beyzavi, C. J. Stephenson,
J. T. Hupp and O. K. Farha, Chem. Sci., 2015, 6, 2286. (b) M. Ding and
H. Jiang, ACS. Catal., 2018, 8, 3194. (c) Q. Yang, Q. Xu and H. Jiang,
Chem. Soc. Rev., 2017, 46, 4774. (d) Y. Huang, J. Liang, X. Wang and R.
Cao, Chem. Soc. Rev., 2017, 46, 126.
(a) Y. Cui, Y. Yue, G. Qian and B. Chen, Chem. Rev., 2011, 112, 1126;
(
b) Z. Hu, B. J. Deibert and J. Li, Chem. Soc. Rev., 2014, 43, 5815; (c) W.
+
0
+
-
Fig. 5 UV-Vis absorption spectra of equimolar MB & NR (a) and MB & MO (b) in the
presence of the complex 3 at different times. The inset images display the change in
colors before and after the dye adsorption by complex 3.
P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and S. K. Ghosh,
Chem. Soc. Rev., 2017, 46, 3242.
(a) M. Zhang, Z. Gu, M. Bosch, Z. Perry and H. Zhou, Coord. Chem. Rev.,
7
8
9
2
015, 293, 327; (b) I. Imaz, M. Rubio-Martínez, J. An, I. Solé-Font, N.
In summary, by introducing the versatile auxiliary ligands,
three novel zinc-porphyrin MOFs had been constructed. All of
these MOFs exhibit the distinct 3D extended structures
fabricated including the different zinc clusters and topological
structures, which must be ascribed to the synergistic effect
between the porphyrinic linker and versatile N-donor ligands.
Especially for 3, the open Watson-Crick planar in the interior
surface has been presented. Benefiting from the structural
traits as the high porosity and anionic framework, all of these
MOFs can selectively adsorb cationic organic dyes in solution.
L. Rosi and D. Maspoch, Chem. Commun., 2011, 47, 7287.
(a) G. Beobide, O. Castillo, J. Cepeda, A. Luque, S. Pérez-Yáñez, P.
Román, J. Thomas-Gipson, Coord. Chem. Rev., 2013, 257, 2716; (b) P.
Amo-Ochoa and F. Zamora, Coord. Chem. Rev., 2014, 276, 34.
(a) M. H. Beyzavi, N. A. Vermeulen, A. J. Howarth, S. Tussupbayev, A.
B. League, N. M. Schweitzer, J. R. Gallagher, A. E. Platero-Prats, N.
Hafezi, A. A. Sarjeant, J. T. Miller, K. W. Chapman, J. F. Stoddart, C. J.
Cramer, J. T. Hupp and O. K. Farha, J. Am. Chem. Soc., 2015, 137,
1
3624. (b) J. A. Johnson, B. M. Petersen, A. Kormos, E. Echeverría, Y.
Chen and J. Zhang, J. Am. Chem. Soc., 2016, 138, 10293. (c) G. Lin, H.
Ding, D. Yuan, B. Wang and C. Wang, J. Am. Chem. Soc., 2016, 138,
3302; (d) S. Huh, S. -J. Kim and Y. Kim, CrystEngComm, 2016, 18, 345.
The pore dimension and charged framework must be 10 (a) J. Pang, S. Yuan, J. Qin, M. Wu, C. T. Lollar, J. Li, N. Huang, B. Li, P.
Zhang and H. Zhou, J. Am. Chem. Soc., 2018, 140, 12328; (b) P. Deria,
D. A. Gómez-Gualdrón, I. Hod, R. Q. Snurr, J. T. Hupp and O. K. Farha,
J. Am. Chem. Soc., 2016, 138, 14449; (c) W. Morris, B. Volosskiy, S.
Demir, F. Gándara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart
responsible for the origination of the different adsorption
behaviors. The presented results have expanded the
coordination diversities of porphyrin-based MOFs, and
illustrating the important role of the synthesis strategy for
fabricating the anticipated MOF materials.
and O. M. Yaghi, Inorg. Chem., 2012, 51, 6443.
11 (a) N. Huang, K. Wang, H. Drake, P. Cai, J. Pang, J. Li, S. Che, L. Huang,
Q. Wang and H. Zhou, J. Am. Chem. Soc., 2018, 140, 6383; (b) Z. Zhang,
L. Zhang, L. Wojtas, P. Nugent, M. Eddaoudi and M. J. Zaworotko, J.
Am. Chem. Soc., 2011, 134, 924.
2 (a) G. Dutta, A. K. Jana and S. Natarajan, Chem. - Eur. J., 2017, 23,
8932; (b) W. Fan, H. Lin, X. Yuan, F. Dai, Z. Xiao, L. Zhang, L. Luo and R.
Wang, Inorg. Chem., 2016, 55, 6420.
We gratefully acknowledge the National Natural Science
Foundation of China (No. 21471062), the Center for Gas
Separations Relevant to Clean Energy Technologies, an Energy
Frontier Research Center (EFRC) funded by the U.S. Department
of Energy (DOE), Office of Science, and Office of Basic Energy
Sciences (DESC0001015), Office of Fossil Energy, the National
Energy Technology Laboratory (DE-FE0026472), and the Robert
A. Welch Foundation through a Welch Endowed Chair to HJZ (A-
1
0
030) for financial support, and the Analytical and Testing
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins