3
Table 2. Synthesis of 4’-O-pyridoxine derivatives via thermal
o-PMa
Acknowledgments
The project described was supported by Award No. CHE-
1530959 from the National Science Foundation. GRB is grateful
to Florida Gulf Coast University for the startup funds that support
research.
Supplementary Material
Entry
1
Product
2
R
Mec
Etc
Yield (%)b
Supplementary data associated with this article can be found,
in the online version, at
57
58
44
83
38
79
55
46
70
82
38
72
2
5a
5b
5c
References and notes
3
i-Prc
1. (a) Clayton, P. T. J. Inherit. Metab. Dis. 2006, 29, 317-326. (b)
4
n-Bu
NIH, Office of dietary supplements. Dietary Supplement Fact
Sheet:
−237.
Vitamin
B6
(accessed
Nov
20,
2016).
5
t-Bu
5d
5e
6
i-Amyl
s-Amyl
t-Amyl
Bn
2. Jain, S. K.; Lim, G. Free Radical Biol. Med. 2001, 30, 232
3. (a) Matxain, J. M.; Ristilä, M.; Strid, Å.; Eriksson, L. A. Chem.
− Eur. J. 2007, 13, 4636−4642. (b) Ohta, B. K.; Foote, C. S. J. Am.
Chem. Soc. 2002, 124, 12064-12065.
4. Lheureux, P.; Penaloza, A.; Gris, M. Eur. J. Emerg. Med. 2005, 12,
78-85.
5. (a) Leistner, E.; Drewke, C. J. Nat. Prod. 2010, 73, 86-92. (b) Jang,
H.-S.; Roh, S. Y.; Jeong, E. H.; Kim, B.-S.; Sunwoo, M. K. J.
Epilepsy Res. 2015, 5, 104–106.
6. Williams, M. E.; Bolton, W. K.; Khalifah, R. G.; Degenhardt, T. P.;
Schotzinger, R. J.; McGill, J. B. Am. J. Nephrol. 2007, 27, 605-614.
7. (a) Kesel, A. J. Curr. Med. Chem. 2005, 12, 2095-2162. (b) Wang,
Z.; Huang, J.-D.; Wong, K.-L.; Wang, P.-G.; Zhang, H.-J.; Tanner,
J. A.; Spiga, O.; Bernini, A.; Zheng, B.-J.; Niccolai, N. FEBS J.,
2011, 278, 383-389.
7
5f
8
5g
5h
5i
9
10
11
12
13
Geranyl
β-Methallyl
2-Butenyl
2-Methoxyethyl
5j
5k
5l
56
aAll reactions were conducted [1]0= 0.2 M. Isolated yield.
b
8. Stranix, B.; Beaulieu F.; Bouchard J.-E.; Milot, G.; Zhigang, W.;
cRan for 144 h.
Ruel R. US 2011/0178120A1, 2011.
9. (a) Pugachev, M. V.; Shtyrlin, N. V.; Sysoeva, L. P.; Nikitina, E.
V.; Abdullin, T. I.; Iksanova, A. G.; Ilaeva, A. A.; Musin, R. Z.;
Berdnikov, E. A.; Shtyrlin, Y. G. Bioorg. Med. Chem. 2013, 21,
4388-4395. (b) Pugachev, M. V.; Shtyrlin, N. V.; Sapozhnikov, S.
V.; Sysoeva, L. P.; Iksanova, A. G.; Nikitina, E. V.; Musin, R. Z.;
Lodochnikova, O. A.; Berdnikov, E. A.; Shtyrlin, Y. G. Bioorg.
Med. Chem. 2013, 21, 7330-7342.
10. Lui, L.; Breslow, R. Bioorg. Med. Chem. 2004, 12, 3277-3287.
11. Zhang, D.-H.; Bai, S.; Dong, X.-Y.; Sun, Y. J. Agric. Food Chem.
2007, 55, 4526-4531.
The yields for the thermal o-pyridinone methide trapping with
various alcohols ranged from 38-83%. Generally, the less
substituted alcohols provided higher yields than those with higher
substitution. Additionally, the lower boiling point alcohols (2, 5a,
5b, 5d) that required a pressurized vessel tended to provide lower
yields than the higher boiling entries. Ginkgotoxin 2 was
obtained in a 57% yield. The high boiling point primary alcohols,
n-butanol, benzyl, and geraniol (5c, 5g, 5h) provided excellent
yields of 83%, 70%, and 82% respectively. The geranyl example
(5h) is particularly encouraging since it contains sensitive
functionality that may not work well under the previously
reported Lewis acid/base-catalyzed conditions. The ether moiety
of 2-methoxyethanol (5j) was tolerated by the reaction manifold
and provided an acceptable yield of 52%. Propargylic alcohol
provided an inseparable complex product mixture with the Diels-
Alder adduct. Other 3-pyridinol derivatives, (4-methoxypyridin-
2-yl)methanol and 2-(hydroxymethyl)pyridin-3-ol HCl were
attempted in the reaction manifold but only trace product was
observed after three days with n-butanol.
12. Wu, M.; Xu, Q.; Strid, Å.; Martell, J. M.; Eriksson, L. A. J. Phys.
Chem. A 2011, 115, 13556-13563.
13. (a) Gawande, M. B.; Bonifácio, V. D. B.; Luque, R.; Branco, P. S.;
Varma, R. S. ChemSusChem 2014, 7, 24-44. (b) Sarkar, A.; Santra,
S.; Kundu, S. K.; Hajra, A.; Zyryanov, G. V.; Chupakhin, O. N.;
Charushin, V. N.; Majee, A. Green Chem. 2016¸ 18, 4475-4525.
14. (a)Caruana, L.; Fochi, M.; Bernardi, L. Molecules 2015, 20, 11733-
11764. (b) Wang, Z.; Sun, J. Synthesis 2015, 47, 3629-3644.
15. Harris, S. A. J. Am. Chem. Soc. 1940, 62, 3203-3205.
16. Frater-Schröder M.; Mahrer-Busato, M. Bioorg. Chem. 1975, 4,
332-341.
17. Brousmiche, D. W.; Wan, P. J. Photochem. Photobiol. A 2002,
149, 71-81.
18. (a) Liu, Y.; Chen, S.-N.; McAlpine, J. B.; Klein, L. L.; Friesen, J.
B.; Lankin, D. C.; Pauli, G. F. J. Nat. Prod. 2014, 77, 611-617. (b)
Liu, Y.; Friesen, J. B.; Klein, L. L.; McAlpine, J. B.; Lankin, D. C.;
Pauli, G. F.; Chen, S.-N. J. Chromatogr. A 2015, 1426, 248-251.
19. Matxain, J. M.; Ristilä, M.; Strid, Å.; Eriksson, L. A. J. Phys.
Chem. A 2006, 110, 13068-13072.
Conclusion
The general synthesis of 4’-O-substituted pyridoxine
derivatives with high regioselectivity under catalyst-free
conditions is disclosed. This operationally-simple methodology
enables access to a broad scope of ether analogs from
inexpensive, commercially available pyridoxine and alcohols in
moderate to excellent yields via the rare ortho-pyridinone
methide intermediate. The substrate scope demonstrated good
functional group compatibility with primary, secondary, and
tertiary alcohols and ether and olefin moieties being well-
tolerated. The analysis of the biological activities of these
compounds and the incorporation of additional nucleophilic
partners will be reported in due course.
20. Zheng, H.; Hall, D. G. Tetrahedron Lett. 2010, 51, 4256-4259.