C O M M U N I C A T I O N S
Table 3. Carbonylation of Amines with CO2 over 0.05 wt %
Au/Poly1a
Figure 1. Picture and HRTEM image of 0.05 wt % Au/Poly1.
a Reaction conditions: 90 mL autoclave, 0.2 g of catalyst (0.05 wt %
Au/Poly1), 4 mL of amines, 1 mL of water, 50 atm CO2, 180 °C, 20 h.
b Turn over frequencies for products, mol product per mol gold per hour.
Scheme 3. Carbonylation of Amines with CO2 over Nanogold
Catalysts
corresponding disubstituted ureas (Table 3). It can be seen that the
isolated yields of dicyclohexyl urea and dibenzyl urea were 85 and
83%. Here, we use TOFP (turn over frequency for product) in
instead of the TOF concept because the alkylamines could react
with carbon dioxide to yield the corresponding carbamate under
any conditions (Scheme 3), and TOF, therefore, could not denote
the difference of catalytic activity of different catalysts. The TOFP
numbers of 0.05 wt % Au/Poly1 catalyst in the carbonylation of
amines, therefore, were 2900 and 3000 mol/mol/h, respectively,
which were much better than that of previously reported homoge-
neous catalysts (10-20 mol/mol/h).9a These results suggested that
the activation of carbon dioxide over polymer-supported nanogold
catalysts could be universal.
Figure 2. Possible mechanisms for (I) disubstituted urea synthesis and
(II) cyclization reactions of epoxides.
Acknowledgment. This work was financially supported by The
National Natural Science Foundation of China (No. 20173068).
Supporting Information Available: Details for the preparation of
polymer-supported nanogold catalysts, XPS, TEM, and XRD charac-
terizations of polymer-supported nanogold catalysts, and complete ref
2b. This material is available free of charge via the Internet at http://
pubs.acs.org.
References
For 0.05 wt % Au/Poly1, XPS analysis showed that the gold
content on the surface of the polymer was 8.7 wt % and the
chemical state of gold species was partially cationic (BE ) 84.3
eV) (Figures S1,2). These results indicated that the nanogold
particles were assembled on the surface of the polymer support,
which ensured the high catalytic activity with lower gold content,
and some interactions occurred between the nanogold particles and
the cationic terminal group of the polymer. Further TEM charac-
terization (Figure 1) indicated the formation of nanogold particles,
and the average particle sizes of the nanogold were ∼3, ∼6, ∼10,
and ∼12 nm (Figures S3-5) for 0.01 wt % Au/Poly1, 0.05 wt %
Au/Poly1, 0.1 wt % Au/Poly1, and 0.5 wt % Au/Poly1. Therefore,
the catalytic activity of the polymer-supported nanogold catalysts
was regulated by the particle size of nanogold particle, that is, higher
catalytic activity exhibited over a smaller nanogold particle. XRD
characterization confirmed the formation of crystal gold species
when the gold loadings were high enough (Figure S6).
As to the reaction mechanism, it is still not clear at this stage,
but the activation of carbon dioxide at the nanogold particle should
be the key step, and the synergism between nanogold species and
the peculiar microenvironment of the polymer surface should be
indispensable (Figure 2), which may be completely different from
previous reported processes for carbon dioxide activation with the
acid-base catalysts.9a,10
In conclusion, we have shown that polymer-immobilized nano-
gold catalysts had unprecedented catalytic activity for activation
of carbon dioxide, with TOF > 50 000 mol/mol/h for the synthesis
of cyclic carbonate and TOFP ≈ 3000 mol/mol/h for the synthesis
of disubstituted ureas. The synergism between the nanogold species
and the peculiar microenvironment of the polymer surface resulted
in the exclusive catalytic activity for these two kinds of reactions.
The particle size of the nanogold, other than gold loading, had much
stronger impact on the catalytic performance. Further investigation
is now underway.
(1) (a) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987,
405. (b) Haruta, M.; Yamada, N.; Kobayashi, T.; Ijima, S. J. Catal. 1989,
115, 301.
(2) (a) Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647. (b)
Boyen, H.-G. et al. Science 2002, 297, 1533. (c) Lopez, N.; Nørskov, J.
K. J. Am. Chem. Soc, 2002, 124, 11262. (d) Guzman, J.; Gates, B. C. J.
Am. Chem. Soc. 2004, 126, 2672. (e) Kim, T. S.; Stiehl, J. D.; Reeves, C.
T.; Meyer, R. J.; Mullins, C. B. J. Am. Chem. Soc. 2003, 125, 2018. (f)
Schwerdtfeger, P. Angew. Chem., Int. Ed. 2003, 42, 1892.
(3) (a) Mohr, C.; Hofmeister, H.; Radnik, J.; Claus, P. J. Am. Chem. Soc.
2003, 125, 1905. (b) Mohr, C.; Hofmeister, H.; Claus, P. J. Catal. 2002,
213, 86. (c) Claus, P.; Bru¨ckner, A.; Mohr, C.; Hofmeister, H. J. Am.
Chem. Soc. 2000, 122, 11430-11439.
(4) Kapoor, M. P.; Sinha, A. K.; Seelan, S.; Inagaki, S.; Tsubota, S.; Hoshida,
H.; Haruta, M. Chem. Commun. 2002, 2902.
(5) (a) Gallezot, P. Catal. Today 1997, 37, 405. (b) Mohr, C.; Hofmeister,
H.; Claus, P. J. Catal. 2002, 213, 86. (b) Kimura, H. Appl. Catal. A 1993,
105, 143. (c) Prati, L.; Rossi, M. J. Catal. 1998, 176, 552. (d) Biella, S.;
Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Hutchings, G. J. Chem.
Commun. 2002, 696.
(6) Salama, T. M.; Ohnishi, R.; Ichikawa, M. Chem. Commun. 1997, 105.
(7) (a) Grisel, R. J. H.; Kooyman, P. J.; Nieuwenhuys, B. E. J. Catal. 2000,
191, 430. (b) Waters, R. D.; Weimer, J. J.; Smith, J. E. Catal. Lett. 1995,
30, 181.
(8) (a) Shi, F.; Deng, Y. J. Catal. 2002, 211, 548. (b) Shi, F.; Deng, Y. Stud.
Surf. Sci. Catal. 2003, 145, 193.
(9) (a) Shi, F.; Deng, Y.; SiMa, T.; Peng, J.; Gu, Y.; Qiao, B. Angew. Chem.,
Int. Ed. 2003, 42, 3257. (b) Gu, Y.; Shi, F.; Deng, Y. J. Org. Chem.
2004, 69, 391.
(10) (a) Yano, H.; Ishiguro, H.; Fujihara, H.; Ypshihara, M.; Maeshima, T.
Chem. Commun. 1997, 1129. (b) Yamaguchi, K.; Ebitani, K.; Yoshida,
T.; Yoshida, H.; Kaneda, K. J. Am. Chem. Soc. 1999, 121, 4526. (c) Calo´
, V.; Nacci, A.; Monopoli, A.; Fanizzi, A. Org. Lett. 2002, 4, 2561. (d)
Kim, H. S.; Kim, J. J.; Lee, B. G.; Jung, O. S.; Jang, H. G.; Kang, S. O.
Angew. Chem., Int. Ed. 2000, 39, 4096. (e) Li, F.; Xia, C.; Xu, L.; Sun,
W.; Chen, G. Chem. Commun. 2003, 2042. (f) Peng, J.; Deng, Y. New J.
Chem. 2001, 25, 639. (g) Yang, H.; Gu, Y.; Deng, Y.; Shi, F. Chem.
Commun. 2002, 274. (h) Li, F.; Xiao, L.; Xia, C.; Hu, B. Tetrahedron
Lett. 2004, 45, 8307.
(11) (a) Minisci, F.; Coppa, F.; Fontana, F. J. Chem. Soc., Chem. Commun.
1994, 679. (b) Horvath, M. J.; Saylik, D.; Elmes, P. S.; Jackson, W. R.;
Lovel, C. G.; Moody, K. Tetrahedron Lett. 1999, 40, 363. (c) Abla, M.;
Choi, J.; Sakakura, T. Chem. Commun. 2001, 2238.
(12) Pomogailo, A. D. Catalysis by Polymer-Immobilized Metal Complexes;
Gordon and Breach Science Publishers: Langhorne, PA, 1998; pp
375-383.
JA042207O
9
J. AM. CHEM. SOC. VOL. 127, NO. 12, 2005 4183