3910
M.-E. Theoclitou, L. A. Robinson / Tetrahedron Letters 43 (2002) 3907–3910
The work presented here demonstrates a straightfor-
ward and mild procedure for the efficient synthesis of
2,2,4 substituted 1,2 dihydro-quinolines using scandium
triflate catalysis. A variety of anilines and unsymmetri-
cal ketones can be used to expand the scope of the
substituents, particularly five-membered ring heterocy-
cles to yield a variety of fused dihydropyridines. Com-
pounds that were almost impossible to synthesize via
the standard routes have also been produced in reason-
able yields via the use of microwave technology. The
mild conditions developed make this procedure espe-
cially amenable to combinatorial library synthesis.
17. Arduini, A.; Bigi, F.; Casiraghi, G.; Casnati, G.; Sartori,
G. Syntheses 1981, 975–980.
18. Cossy, J.; Poitevin, C.; Gomez Pardo, D.; Peglion, J.-L.;
Dessinges, A. J. Org. Chem. 1998, 63, 4554–4557.
19. Edwards, J. P.; Ringgenberg, J. D.; Jones, T. K. Tetra-
hedron Lett. 1998, 39, 5139–5142.
20. Walter, H.; Schneider, J. Heterocycles 1995, 41, 1251–
1269.
21. Walter, H. Helv. Chim. Acta 1994, 77, 608–614.
22. Experimental: 0.5 mmol of the desired aniline were dis-
solved in 3 mL anhydrous acetone. To this solution was
added scandium triflate (0.1 equiv.; 0.05 mmol; 25 mg).
The reaction mixture was shaken for 2 h at rt. After
reaction was complete, by LC/MS monitoring, the mix-
ture was evaporated to dryness, resuspended in 1:1
DMSO:CH3CN, and filtered. Purification was carried out
on a semipreparative YMC ODS-A reverse phase column
(20×50 mm, particle size S-5) via use of a 10–99% gradi-
ent of 0.05% TFA in water/0.035% TFA in acetonitrile
(flow rate 35 ml/min) on a Shimadzu HPLC system with
an API150EX single quadropole mass spectrometer.
23. Experimental: 0.5 mmol of the desired aniline were dis-
solved in 3 mL anhydrous acetonitrile. To this solution
was added scandium triflate (0.1 equiv.; 0.05 mmol; 25
mg) and 2-butanone (5 equiv.; 2.5 mmol; 223 mL). The
reaction mixture was shaken for 6 h at rt. The workup
was identical to that of Ref. 22.
24. Experimental for lanthanide catalyst reaction with Per-
sonal Chemistry SmithSynthesizer™ microwave: 0.5
mmol of the desired aniline were dissolved in 3 mL
anhydrous acetonitrile. To this solution was added scan-
dium triflate (0.1 equiv.; 0.05 mmol; 25 mg) and ace-
tophenone (5 equiv.; 2.5 mmol; 291 mL). The reaction
mixture was microwaved for 50 min at 150°C using a
Smith Personal Workmate. The workup was identical to
that of Ref. 22.
25. Experimental for Skraup conditions with Personal Chem-
istry SmithSynthesizer™ microwave: 0.5 mmol of the
desired aniline were dissolved in 3 mL anhydrous ace-
tone. To this solution was added iodine (0.1 equiv.; 0.05
mmol; 12.7 mg) and the reaction mixture was
microwaved for 1 h at 140°C using a Smith Personal
Workmate. The workup was identical to that of Ref. 22.
26. Zeng, L.; Kassel, D. B. Anal. Chem. 1998, 70 (20),
4380–4388.
27. Zeng, L.; Wang, X.; Wang, T.; Kassel, D. B. J. Comb.
Chem. High Thr. Screening 1998, 1, 101–111.
28. Zeng, L.; Burton, L.; Yung, K.; Shushan, B.; Kassel, D.
B. J. Chromatogr. 1998, 794, 3–13.
Acknowledgements
The authors wish to thank their colleagues, especially
Ingo Hardt, John Pham and Erik Evensen for their
continued assistance in this project. The support and
efforts of Mark Suto and Peter Myers are also grate-
fully acknowledged.
References
1. Johnson, J. V. J. Med. Chem. 1989, 32, 19429.
2. Aono, T.; Doi, T.; Fukatsu, K. 1992, JP 042823701992
A2
3. De Nanteuil, G.; Duhault, J.; Ravel, D.; Herve, Y. 1993,
EP 528734.
4. Pearce, B. C.; Wright, J. J. 1995, US 5411969.
5. Jones, T. K.; Winn, D. T.; Zhi, L.; Hamann, L. G.;
Tegley, C. M.; Pooley, C. L. F. 1997, US 5688808.
6. Coughlan, M. J.; Elmore, S. W.; Kort, M. E.; Kym, P.
R.; Moore, J. L.; Pratt, J. K.; Wang, A. X.; Edwards, J.
P.; Jones, T. K. 1999, WO 9941256.
7. Vaughan, W. R. Org. Synth. 1955, 3, 329–334.
8. Balayer, A.; Sevenet, T.; Schaller, H.; Hamid, A.; Hadi,
A.; Chiaroni, A.; Riche, C.; Pais, M. Nat. Prod. Lett.
1993, 2, 61–67.
9. Doepke, W.; Fritsch, G. Pharmazie 1969, 24, 782–785.
10. Parello, J. Bull. Soc. Chim. Fr. 1968, 3, 1117–1129.
11. Abe, F.; Yamauchi, T.; Shibuya, H.; Kitagawa, I.;
Yamashita, M. Chem. Pharm. Bull. 1998, 46, 1235–1238.
12. Kurata, H.; Kohama, T.; Kono, K.; Kitayama, K.;
Hasegawa, T. 2001, WO 0134570 A1.
13. Jones, T. K.; Goldman, M. E.; Pooley, C. L. F.; Winn,
D. T.; Edwards, J. E.; West, S. J.; Tegley, C. M.; Zhi, L.;
Hamann, L. G. 1996, WO 9619458.
14. Cossy, J.; Poitevin, C.; Gomez Pardo, D.; Peglion, J.-L.;
Dessinges, A. Tetrahedron Lett. 1998, 39, 2965–2968.
15. Kobayashi, K.; Kawakita, M.; Morikawa, O.; Konishi,
H. Chem. Lett. 1995, 7, 575–576.
16. Dallacker, F.; Reperich, K.; Mayer, M. Chem.-Ztg 1991,
115, 203–208.
29. 1H NMR (CDCl3): l 8.01–7.38 (m, 6H), 7.28–6.89 (m,
7H), 6.18–6.12 (two bs, 2H), 5.73 (s, 1H), 1.80 (s, 3H);
13C NMR (CDCl3): l 149.40, 144.45, 140.72, 139.45,
136.41, 134.21, 133.62, 133.21, 131.32, 130.87, 129.84,
129.20, 128.94, 127.99, 127.98, 127.45, 126.54, 126.30,
126.23, 124.74, 122.99, 118.65, 116.45, 110.93, 53.50,
28.58.