H. Alinezhad, S. Fallahi / Chinese Chemical Letters 23 (2012) 927–929
929
Table 2
Protection of carbonyl compounds as oxathiolanes using catalytic amount of NBSac.a
Entry
Substrate
Productb
Time (h)
Yieldc (%)
Ref.
1
Benzaldehyde
2-Phenyl-1,3-oxathiolane
1.25
0.25
0.5
0.5
0.5
0.75
0.5
1.25
1.16
0.25
1.83
1
85
97
93
90
87d
83d
80
50d
90
97
84
80
80
82
80
[15]
[14]
[14]
[19]
[14]
[14]
[20]
[17]
[16]
[9]
2
4-Nitrobenzaldehyde
4-Chlorobenzaldehyde
4-Bromobenzaldehyde
4-Methylbenzaldehyde
4-Methoxybenzaldehyde
2-Naphthaldehyde
Acetophenone
2-(4-Nitrophenyl)-1,3-oxathiolane
2-(4-Chlorophenyl)-1,3-oxathiolane
2-(4-Bromophenyl)-1,3-oxathiolane
2-(4-Methylphenyl)-1,3-oxathiolane
2-(4-Metoxyphenyl)-1,3-oxathiolane
2-(Naphthalen-6-yl)-1,3-oxathiolane
2-Methyl-2-phenyl-1,3-oxathiolane
2-Styryl-1,3-oxathiolane
3
4
5
6
7
8
9
Cinnamaldehyde
10
11
12
13
14
15
4-Acetylbenzaldehyde
Thiophene-2-carbaldehyde
Hexanal
1-(4-(1,3-Oxathiolan-2-yl)phenyl)ethanone
2-(2-Thienyl)-1,3-oxathiolane
[7]
2-Pentyl-1,3-oxathiolane
[16]
[16]
[18]
[18]
2-Heptanone
2-(Heptan-2-yl)-1,3-oxathiolane
Spiro[cyclohexane-1,20-[1,3]oxathiolane]
Spiro[cyclopentane-1,20-[1,3]oxathiolane]
1.5
1
Cyclohexanone
Cyclopentanone
1
a
Reaction conditions: Benzaldehyde (1 mmol), 2-mercaptoethanol (1.2 mmol), NBSac (10 mol%), room temperature, CH2Cl2.
The products characterized with 1H and 13C NMR.
b
c
d
Yields refer to pure isolated products.
With excess amount of 2-mercaptoethanol.
3. Conclusion
A novel and efficient procedure has been developed for synthesis of 1,3-oxathiolane derivatives from carbonyl
compounds and 2-mercaptoethanol in the presence of catalytic amount of NBSac. Operational simplicity, low cost of
the catalyst, high yield and excellent chemoselectivity reactions are the key features of this methodology.
Acknowledgment
We are thankful to the Research Council of Mazandaran University for the partial support of this work.
Appendix A. Supplementary data
References
[1] L.X. Zheng, C. Lu, H.W. Hong, J.Y. Guo1, M.H. Yuan, Sci. China B: Chem. 52 (2009) 2166.
[2] E.L. Eliel, S. Morris-Natschko, J. Am. Chem. Soc. 106 (1984) 2937.
[3] G.E. Wilson, M.G. Huang, W.W. Schloman, J. Org. Chem. 33 (1968) 2133.
[4] V.K. Yadav, A.G. Fallis, Tetrahedron Lett. 29 (1988) 897.
[5] L. Garlaschelli, G. Vidari, Tetrahedron Lett. 31 (1990) 5815.
[6] H. Firouzabadi, N. Iranpoor, B. Karimi, Synlett (1998) 739.
[7] A. Kamal, G. Chouhan, K. Ahmed, Tetrahedron Lett. 43 (2002) 6947.
[8] K. Kazahaya, N. Hamada, S. Ito, T. Sato, Synlett 9 (2002) 1535.
[9] B. Karimi, H. Seradj, Synlett (2000) 805.
[10] E. Mondal, P.R. Sahu, G. Bose, A.T. Khan, Tetrahedron Lett. 43 (2002) 2843.
[11] N. Iranpoor, H. Firouzabadi, R. Azadi, F. Ebrahimzadeh, Can. J. Chem. 84 (2006) 69.
[12] A. Khazaei, A. Aminimanesh, A. Rostami, Phosphorus Sulfur Relat. Elem. 179 (2004) 483.
[13] S.P.L.D. Souza, J.F.M. Da Silva, M.C.S. De Mattos, Synth. Commun. 33 (2003) 935.
[14] P. Hazarika, S.D. Sharma, D. Konwar, Catal. Commun. 9 (2008) 2398.
[15] K.K. Rana, C. Guin, S. Jana, S.C. Roy, Tetrahedron Lett. 44 (2003) 8597.
[16] J.S. Yadav, B.V.S. Reddy, S.K. Pandey, Synlett 2 (2001) 238.
[17] A. Majee, K.S. Kundu, S. Islam, Synth. Commun. 36 (2006) 3767.
[18] X.Z. Liang, S. Gao, J.G. Yang, M.Y. He, Catal. Lett. 125 (2008) 396.
[19] F. Shirini, P. Sadeghzadeh, M. Abedini, Chin. Chem. Lett. 20 (2009) 1457.
[20] E. Mondal, P.R. Sahu, G. Bosea, A.T. Khana, Tetrahedron Lett. 43 (2002) 2843.