Full Paper
rates of 0.1 V s–1, the solutions were flushed with argon. For reversi-
ble cyclic voltammograms the average of reductive and oxidative
peak potentials was used to determine the redox potential; for irre-
Acknowledgments
We thank Martin Kuss-Petermann for the synthesis of [RutBu
-
versible oxidations, the inflection point of the oxidative sweep was pyimH](PF6)2. This work was supported by the Swiss National
used as an approximation for the oxidation potential. Steady-state
luminescence experiments were performed with a Fluorolog-3 ap-
paratus from Horiba Jobin–Yvon. Samples were excited at wave-
lengths corresponding to the isosbestic points observed in acid-
base titration experiments in Figures S2 and S3 of the Supporting
Information. Luminescence lifetime and transient absorption experi-
ments were conducted with an LP920-KS spectrometer from Edin-
burgh Instruments equipped with an iCCD detector from Andor.
The excitation source was the frequency-doubled output from a
Quantel Brilliant b laser. For aerated optical spectroscopic experi-
ments, quartz cuvettes from Starna and Helma were used. For all
deaerated optical spectroscopic experiments the samples were de-
oxygenated through three subsequent freeze–pump–thaw cycles in
home-built quartz cuvettes that were specifically designed for this
purpose. CCDC 1518357 {for [RuNMe2pyimH](PF6)2} contains the sup-
Science Foundation through grant number 200021_156063/1
and by the NCCR Molecular Systems Engineering.
Keywords: Photochemistry · Thermochemistry · Redox
chemistry · Substituent effects · Ruthenium
[1] C. R. Bock, T. J. Meyer, D. G. Whitten, J. Am. Chem. Soc. 1974, 96, 4710–
4712.
[2] R. Bensasson, C. Salet, V. Balzani, J. Am. Chem. Soc. 1976, 98, 3722–3724.
[3] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–
5363.
[4] H. Huo, X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K. Harms, M.
Marsch, G. Hilt, E. Meggers, Nature 2014, 515, 100–103.
[5] L. A. Büldt, X. Guo, A. Prescimone, O. S. Wenger, Angew. Chem. Int. Ed.
2016, 55, 11247–11250.
[6] S. Berardi, S. Drouet, L. Francàs, C. Gimbert-Suriñach, M. Guttentag, C.
Richmond, T. Stoll, A. Llobet, Chem. Soc. Rev. 2014, 43, 7501–7519.
[7] L. Hammarström, Acc. Chem. Res. 2015, 48, 840–50.
[8] J. L. Fillol, Z. Codolà, I. Garcia-Bosch, L. Gómez, J. J. Pla, M. Costas, Nat.
Chem. 2011, 3, 807–813.
[9] C. J. Gagliardi, B. C. Westlake, C. A. Kent, J. J. Paul, J. M. Papanikolas, T. J.
Meyer, Coord. Chem. Rev. 2010, 254, 2459–2471.
[10] E. C. Gentry, R. R. Knowles, Acc. Chem. Res. 2016, 49, 1546–1556.
[11] K. T. Tarantino, P. Liu, R. R. Knowles, J. Am. Chem. Soc. 2013, 135, 10022–
10025.
[12] M. Zhang, T. Irebo, O. Johansson, L. Hammarström, J. Am. Chem. Soc.
2011, 133, 13224–13227.
[13] O. S. Wenger, Acc. Chem. Res. 2013, 46, 1517–1526.
[14] M. Sjödin, S. Styring, H. Wolpher, Y. Xu, L. Sun, L. Hammarström, J. Am.
Chem. Soc. 2005, 127, 3855–3863.
[Ru{(tBu)2bpy}2pyimH](PF6)2 {[RutBupyimH](PF6)2}: The following
procedure was applied based on a previously published protocol.[41]
[Ru{(tBu)2bpy}2Cl2] (177 mg, 250 μmol, 1.00 equiv.) was suspended
at reflux in a degassed mixture of water (5 mL) and EtOH (5 mL). 2-
(1H-Imidazol-2-yl)pyridine (44.0 mg, 305 μmol, 1.22 equiv.) was
added, and the reaction mixture was heated to reflux for 3 h. After
cooling to room temperature, a few drops of concentrated aq. HCl
were added, and then ethanol was removed in vacuo. After addition
of satd. aq. KPF6 solution, the precipitate was filtered and washed
with water and Et2O. The solid was collected to give the product
(193 mg, 180 μmol, 72 %) as an orange solid. 1H NMR (300 MHz,
CDCl3): δ = 11.76 (s, 1 H), 8.30–8.10 (m, 6 H), 7.80 (td, J = 7.8, 1.4 Hz,
1 H), 7.73 (d, J = 6.0 Hz, 1 H), 7.69–7.57 (m, 4 H), 7.49 (dd, J = 6.1,
2.0 Hz, 1 H), 7.46–7.37 (m, 3 H), 7.32 (ddd, J = 7.3, 5.7, 1.3 Hz, 1 H),
7.25 (s, 1 H), 6.43 (s, 1 H), 1.41 (d, J = 6.3 Hz, 36 H) ppm.
[15] M. Sjödin, S. Styring, B. Åkermark, L. Sun, L. Hammarström, J. Am. Chem.
Soc. 2000, 122, 3932–3936.
[16] A. Magnuson, H. Berglund, P. Korall, L. Hammarström, B. Åkermark, S.
Styring, L. Sun, J. Am. Chem. Soc. 1997, 119, 10720–10725.
[17] P. Dongare, S. Maji, L. Hammarström, J. Am. Chem. Soc. 2016, 138, 2194–
2199.
C
44H55F12N7P2Ru (1072.97): calcd. C 49.25, H 5.17, N 9.14; found C
49.32, H 4.95, N 9.01. ESI-HRMS: calcd. for [C78H67N9O4Ru]2+
391.6782; found 391.6777.
[18] G. F. Manbeck, E. Fujita, J. J. Concepcion, J. Am. Chem. Soc. 2016, 138,
11536–11549.
[19] J. Chen, M. Kuss-Petermann, O. S. Wenger, J. Phys. Chem. B 2015, 119,
2263–2273.
[Ru{(NMe2)2bpy}2pyimH](PF6)2 {[RuNMe2pyimH](PF6)2}: The fol-
lowing procedure was applied based on a previously published
protocol.[40] A degassed mixture of [Ru{(NMe2)2bpy}2Cl2]Cl·4H2O
(100 mg, 131 μmol, 1.00 equiv.), 2-(1H-imidazol-2-yl)pyridine
(74.0 mg, 510 μmol, 3.89 equiv.) and NEt3 (0.2 mL) in water (5 mL)
and EtOH (5 mL) was heated to reflux for 7 h. After cooling to room
temperature, satd. aq. NH4PF6 solution (0.5 mL) was added. Some
solvent was evaporated in vacuo, and the precipitate was filtered
and washed with water. The obtained solid was purified by column
chromatography (SiO2; acetone → acetone/H2O/satd. aq. KNO3,
100:10:1). The solvent of the red phase was removed in vacuo, and
[20] H. G. Yayla, R. Knowles, Synlett 2014, 25, 2819–2826.
[21] J. Nomrowski, O. S. Wenger, Inorg. Chem. 2015, 54, 3680–3687.
[22] T. T. Eisenhart, J. L. Dempsey, J. Am. Chem. Soc. 2014, 136, 12221–12224.
[23] B. C. Westlake, M. K. Brennaman, J. J. Concepcion, J. J. Paul, S. E. Bettis,
S. D. Hampton, S. A. Miller, N. V. Lebedeva, M. D. E. Forbes, A. M. Moran,
T. J. Meyer, J. M. Papanikolas, Proc. Natl. Acad. Sci. USA 2011, 108, 8554–
8558.
[24] O. S. Wenger, Coord. Chem. Rev. 2015, 282–283, 150–158.
[25] J. C. Freys, G. Bernardinelli, O. S. Wenger, Chem. Commun. 2008, 4267–
4269.
[26] C. Bronner, O. S. Wenger, Inorg. Chem. 2012, 51, 8275–8283.
[27] A. Pannwitz, O. S. Wenger, Phys. Chem. Chem. Phys. 2016, 18, 11374–
11382.
[28] C. Bronner, O. S. Wenger, J. Phys. Chem. Lett. 2012, 3, 70–74.
[29] S. M. Barrett, C. L. Pitman, A. G. Walden, A. J. M. Miller, J. Am. Chem. Soc.
2014, 136, 14718–14721.
0.1
M acetate buffer (pH 5, 10 mL) and satd. aq. KPF6 solution were
added sequentially. The organic solvent was removed in vacuo, and
the precipitate was collected by filtration. The product (65 mg,
63.7 μmol, 48 %) was obtained as a red solid. 1H NMR (400 MHz,
CD3CN): δ = 11.80 (s, 1 H), 8.03 (d, J = 7.9 Hz, 1 H), 7.86 (t, J =
7.7 Hz, 1 H), 7.79 (d, J = 5.6 Hz, 1 H), 7.47 (d, J = 7.3 Hz, 4 H), 7.39
(s, 1 H), 7.28 (d, J = 6.5 Hz, 2 H), 7.18 (m, 3 H), 6.62–6.41 (m, 5 H), 3.10
(m, 24 H) ppm. C36H43F12N11P2Ru·0.75CH3COCH3·2.5H2O (1109.37):
calcd. C 41.41, H 4.77, N 13.89; found C 41.45, H 4.78, N 13.91. ESI-
HRMS: calcd. for [C36H43F12N11P2Ru]2+ 365.6368; found 365.6371.
[30] D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C.
Westlake, A. Paul, D. H. Ess, D. Granville, T. J. Meyer, Chem. Rev. 2012,
112, 4016–4093.
[31] J. J. Concepcion, M. K. Brennaman, J. R. Deyton, N. V. Lebedeva, M. D. E.
Forbes, J. M. Papanikolas, T. J. Meyer, J. Am. Chem. Soc. 2007, 129, 6968–
6969.
Eur. J. Inorg. Chem. 2017, 609–615
614
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim