Scheme 1. Catalytic Sulfonylation with Different Ligands
(GC Yield)a
Figure 1. Structures of Vioxx (1), MK-0524 (2), and diaryl
sulfones 3.3-5
philic aromatic substitution of arenes with arenesulfonic acids
in the presence of strong acids7 or with arenesulfonyl
halides,8 the reaction of carbon electrophiles with sulfinate
salts,9 and the reaction of organomagnesium halides10 or
organolithium compounds11 with sulfonate esters. All these
simple and attractive procedures have their own drawbacks,
mainly due to the incompatibility with numerous functional
groups such as amines, olefins, and some nitrogen hetero-
cycles. Over the past decade, there has been a significant
improvement in metal-mediated coupling of sulfinic acid salts
with aryl halides and triflates12 as well as arylboronic acids
with sulfonyl chlorides13 as alternatives to these conventional
methods. However, the scope is limited to aryl bromides/
iodides or triflates, and the use of air- or moisture-sensitive
reagents is sometimes not avoidable. Recently, a copper-
mediated oxidative coupling reaction of arylboronic acid with
sulfinic acid salt was described.14 However, an excess of
copper acetate (with respect to the arylboronic acid) was
required. Hence, improved methods for the preparation of
diaryl sulfones are therefore highly desirable. In recent years,
we have applied catalytic reactions to the synthesis of new
pharmacologically interesting compounds.15 On the basis of
our previous work on copper-catalyzed reactions,16 we
thought that the use of an appropriate ligand or additive
would enable us to realize a catalytic version of the
a Reaction conditions: see Supporting Information.
sulfonylation of boronic acids to synthesize aryl sulfones
(Scheme 1). With the wide variety of commercially available
boronic acids and esters as well as the metal-catalyzed direct
C-H bond functionalization to the not easily accessible
boronates,17 catalytic sulfonylation of these boron-containing
compounds should be very versatile for the preparation of
sulfones. In light with these issues, here we report the first
copper-catalyzed oxidative coupling of arylboronic acids with
sulfinic acid salts. In our prototypical reaction, phenylboronic
acid and sodium methanesulfinate were reacted at 60 °C in
anhydrous DMSO in air in the presence of Cu(OAc)2, a
ligand, and K2CO3 as base. The initial screening of the
(6) Oae, S. Organic Sulfur Chemistry; CRC Press: Boca Raton, FL, 1992;
Chapter 6.
(7) (a) Graybill, B. M. J. Org. Chem. 1967, 32, 2931. (b) Ueda, M.;
Uchiyama, K.; Kano, T. Synthesis 1984, 323.
(8) (a) Oae, S. Organic Sulfur Chemistry; CRC Press: Boca Raton, FL,
1992; Chapter 4. (b) Nara, S. J.; Harjani, J. R.; Salunkhe, M. M. J. Org.
Chem. 2001, 66, 8616. (c) Frost, C. G.; Hartley, J. P.; Whittle, A. J. Synlett
2001, 830. (d) Bandgar, B. P.; Kasture, S. P. Synth. Commun. 2001, 31,
1065.
(9) (a) Narkevitch, V.; Schenk, K.; Vogel, P. Angew. Chem., Int. Ed.
2000, 39, 1806. (b) Narkevitch, V.; Megevand, S.; Schenk, K.; Vogel, P.
J. Org. Chem. 2001, 66, 5080. (c) Bouchez, L.; Vogel, P. Synthesis 2002,
225. (d) Huang, X.-g.; Vogel, P. Synthesis 2002, 232. (e) Narkevitch, V.;
Vogel, P.; Schenk, K. HelV. Chim. Acta 2002, 85, 1674. (f) Bouchez, L.
C.; Dubbaka, S. R.; Turks, M.; Vogel, P. J. Org. Chem. 2004, 69, 6413.
(g) Bouchez, L. C.; Turks, M.; Bubbaka, S. R.; Fonquerne, F.; Craita, C.;
Laclef, Vogel, S. P. Tetrahedron 2005, 61, 11473. (h) Bouchez, L. C.; Craita,
C.; Vogel, P. Org. Lett. 2005, 7, 897.
(15) (a) Kumar, K.; Michalik, D.; Castro, I. G.; Tillack, A.; Zapf, A.;
Arlt, M.; Heinrich, T.; Bo¨ttcher, H.; Beller, M. Chem.sEur. J. 2004, 10,
746. (b) Michalik, D.; Kumar, K.; Zapf, A.; Tillack, A.; Arlt, M.; Heinrich,
T.; Beller, M. Tetrahedron Lett. 2004, 45, 2057. (c) Khedkar, V.; Tillack,
A.; Michalik, M.; Beller, M. Tetrahedron 2005, 61, 7622. (d) Neumann,
H.; Stru¨bing, D.; Lalk, M.; Klaus, S.; Hu¨bner, S.; Spannenberg, A.;
Lindequist, U.; Beller, M. Org. Biomol. Chem. 2006, 4, 1365. (e) Kaiser,
H. M.; Lo, W. F.; Riahi, A. M.; Spannenberg, A.; Beller, M.; Tse, M. K.
Org. Lett. 2006, 8, 5761. (f) Schwarz, N.; Tillack, A.; Alex, K.; Sayyed, I.
A.; Jackstell, R.; Beller, M. Tetrahedron Lett. 2007, 48, 2897.
(16) (a) Schareina, T.; Zapf, A.; Ma¨gerlein, W.; Mu¨ller, N.; Beller, M.
Synlett 2007, 555. (b) Schareina, T.; Zapf, A.; Ma¨gerlein, W.; Mu¨ller, N.;
Beller, M. Chem.sEur. J. 2007, DOI:10.1002/chem.200700079.
(17) (a) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith,
M. R., III. Science 2002, 295, 305. (b) Ishiyama, T.; Takagi, J.; Hartwig,
J. F.; Miyaura, N. Angew. Chem., Int. Ed. 2002, 41, 3056. (c) Ishiyama,
T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J.
Am. Chem. Soc. 2002, 124, 390. (d) Ishiyama, T.; Takagi, J.; Yonekawa,
Y.; Hartwig, J. F.; Miyaura, N. AdV. Synth. Catal. 2003, 345, 1103. (e)
Chotana, G. A.; Rak, M. A.; Smith, M. R., III. J. Am. Chem. Soc. 2005,
127, 10539. (f) Mkhalid, I. A. I.; Coventry, D. N.; Albesa-Jove, D.;
Batsanov, A. S.; Howard, J. A. K; Perutz, R. N.; Marder, T. B. Angew.
Chem., Int. Ed. 2006, 45, 489. (g) Paul, S.; Chotana, G. A.; Holmes, D.;
Reichle, R. C.; Maleczka, R. E., Jr.; Smith, M. R., III. J. Am. Chem. Soc.
2006, 128, 15552. (h) Lo, W. F.; Kaiser, H. M.; Spannenberg, A.; Beller,
M.; Tse, M. K. Tetrahedron Lett. 2007, 48, 371.
(10) Gilman, H.; Beaver, N. J.; Meyers, C. H. J. Am. Chem. Soc. 1925,
47, 2047.
(11) Baarschers, W. H. Can. J. Chem. 1976, 54, 3056.
(12) (a) Suzuki, H.; Abe, H. Tetrahedron Lett. 1995, 36, 6239. (b) Baskin,
J. M.; Wang, Z. Org. Lett. 2002, 4, 4423. (c) Cacchi, S.; Fabrizi, G.;
Goggiamani, A.; Parisi, L. M. Org. Lett. 2002, 4, 4719. (d) Cacchi, S.;
Fabrizi, G.; Goggiamani, A.; Parisi, L. M. Synlett 2003, 361.
(13) (a) Bandgar, B. P.; Bettigeri, S. V.; Phopase, J. Org. Lett. 2004, 6,
2105. (b) Dubbaka, S. R.; Vogel, P. Chem.sEur. J. 2005, 11, 2633.
(14) Beaulieu, C.; Guay, D.; Wang, Z.; Evans, D. A. Tetrahedron Lett.
2004, 45, 3233.
3406
Org. Lett., Vol. 9, No. 17, 2007