5228
J. Am. Chem. Soc. 2000, 122, 5228-5229
Scheme 1
Practical Catalytic Enantioselective Synthesis of
r,r-Dialkyl-r-amino Acids by Chiral Phase-Transfer
Catalysis
Takashi Ooi, Mifune Takeuchi, Minoru Kameda, and
Keiji Maruoka*
Table 1. Catalytic Enantioselective Double Alkylation of Aldimine
Department of Chemistry, Graduate School of Science
Hokkaido UniVersity, Sapporo 060-0810, Japan
Department of Chemistry, Graduate School of Science
Kyoto UniVersity, Sakyo, Kyoto 606-8502, Japan
Schiff Base Derived from Glycine under Phase-Transfer Conditionsa
ReceiVed February 28, 2000
Nonproteinogenic R,R-dialkyl-R-amino acids have played a
special role in the design of peptides with enhanced properties.1
This is not only because they possess stereochemically stable
quaternary carbon centers but also because their incorporation
into peptides results in the significant influence on the confor-
mational preferences, which eventually provides useful informa-
tion for the elucidation of enzymatic mechanisms.2 Furthermore,
R,R-dialkyl-R-amino acids themselves are often effective enzyme
inhibitors3 and also constitute a series of interesting building
blocks for the synthesis of various biologically active compounds.4
Accordingly, development of truly efficient methods for their
preparation, especially in an enantiomerically pure form, has
become of great importance and numerous studies have been made
for this purpose as seen in recent excellent reviews.5 However,
only a few catalytic systems have been reported with limited
general applicability.6,7 Herein we wish to disclose that R,R-
dialkyl-R-amino acids can be prepared in a highly enantioselective
manner by the one-pot, double alkylation of aldimine Schiff base
of glycine tert-butyl ester 1 under phase-transfer catalytic condi-
tions using our recently introduced C2-symmetric chiral quaternary
ammonium salts 3 as catalysts;8 thus paved the way for practical
asymmetric synthesis of R,R-dialkyl-R-amino acids from the
corresponding R-amino acids.
a The reaction was performed by the sequential treatment of aldimine
Schiff base 1 (0.5 mmol) with R1X (1 equiv) and R2X (1.2 equiv) under
the indicated reaction conditions in the presence of 1 mol % of 3b and
CsOH‚H2O (5 equiv) in toluene (2 mL). b Isolated yield. c Enantiopurity
was determined by HPLC analysis of the amino ester or its N-benzoate
using a chiral column [DAICEL Chiralpak AD (for entries 1 and 4)
and Chiralcel OD (for entry 2)] with hexane-2-propanol as solvent.
Capillary GC analysis with a chiral column (GL Science CP-Chirasil-
DEX CB) was employed for entry 3. d Absolute configuration was
determined by cleavage of the tert-butyl ester (6 N HCl) and comparison
of the optical rotation of the free amino acid with the literature value
[Vedejs, E.; Fields, S. C.; Hayashi, R.; Hitchcock, S. R.; Powell, D.
R.; Schrimpf, M. R. J. Am. Chem. Soc. 1999, 121, 2460 (for entries 1
and 4)].
focused on the search for the appropriate reaction conditions.
Attempted sequential alkylation of 1 with allyl bromide (1 equiv)
and benzyl bromide (1.2 equiv) in 50% aqueous KOH/toluene
(volume ratio ) 1:3) under the influence of 3a (R ) â-Naph) (1
The requisite aldimine Schiff base 1 was conveniently prepared
in a similar manner as previously reported7c and initial studies
(1) (a) Bellier, B.; McCort-Tranchenpain, I.; Ducos, B.; Danascimento, S.;
Meudal, H.; Noble, F.; Garbay, C.; Roques, B. P. J. Med. Chem. 1997, 40,
3947. (b) Mossel, E.; Formaggio, F.; Crisma, M.; Toniolo, C.; Broxterman,
Q. B.; Boesten, W. H. J.; Kamphuis, J.; Quaedflieg, P. J. L. M.; Temussi, P.
Tetrahedron: Asymmetry 1997, 8, 1305. (c) Dery, O.; Josien, H.; Grassi, J.;
Chassaing, G.; Couraud, J. Y.; Lavielle, S. Biopolymers 1996, 39, 67. (d)
Benedetti, E.; Gavuzzo, E.; Santini, A.; Kent, D. R.; Zhu, Y.-F.; Zhu, Q.;
Mahr, C.; Goodman, M. J. Pept. Sci. 1995, 1, 349. (e) Toniolo, C.; Formaggio,
F.; Crisma, M.; Valle, G.; Boesten, W. H. J.; Schoemaker, H. E.; Kamphuis,
J.; Temussi, P. A.; Becker, E. L.; Precigoux, G. Tetrahedron 1993, 49, 3641.
(f) Schiller, P. W.; Weltrowska, G.; Nguyen, T. M.-D.; Lemieux, C.; Chung,
N. N.; Marsden, B. J.; Wilkes, B. C. J. Med. Chem. 1991, 34, 3125.
(2) (a) Paradisi, M. P.; Torrini, I.; Zecchini, G. P.; Lucente, G.; Gavuzzo,
E.; Mazza, F.; Pochetti, G. Tetrahedron 1995, 51, 2379. (b) Burgess, K.; Ho,
K.-K.; Pal, B. J. Am. Chem. Soc. 1995, 117, 3808. (c) Giannis, A.; Kolter, T.
Angew. Chem., Int. Ed. Engl. 1993, 32, 1244. (d) Balaram, P. Curr. Opin.
Struct. Biol. 1992, 2, 845.
(3) For example, see: (a) Zhelyaskov, D. K.; Levitt, M.; Uddenfriend, S.
Mol. Pharmacol. 1968, 4, 445. (a) Sourkers, T. L. Arch. Biochem. Biophys.
1945, 51, 444.
(4) Review: Koert, U. Nachr. Chem. Technol. Lab. 1995, 43, 347.
(5) (a) Duthaler, R. O. Tetrahedron 1994, 50, 1539. (b) Seebach, D.; Sting,
A. R.; Hoffmann, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2708. (c) Wirth,
T. Angew. Chem., Int. Ed. Engl. 1997, 36, 225. (d) Cativiela, C.; Diaz-de-
Villegas, M. D. Tetrahedron: Asymmetry 1998, 9, 3517.
mol %) proceeded very reluctantly at room temperature. After
the solution was stirred for 12 h, hydrolysis with 0.5 M citric
acid in THF afforded R-allyl phenylalanine tert-butyl ester (2;
R1 ) CH2CHdCH2, R2 ) CH2Ph) in 28% isolated yield with
83% ee. This result prompted us to examine solid-liquid phase-
transfer conditions in order to attain sufficient reactivity as well
as selectivity.9 Thorough optimization of the reaction conditions
eventually revealed that initial treatment of the toluene solution
of 1 and 3a (R ) â-Naph) (1 mol %) with allyl bromide (1 equiv)
and commercially available CsOH‚H2O (5 equiv) at -10 °C for
3.5 h and the subsequent reaction with benzyl bromide (1.2 equiv)
at 0 °C for 30 min resulted in formation of the double alkylation
product 2 (R1 ) CH2CHdCH2, R2 ) CH2Ph) in 61% yield with
higher enantiomeric excess (87% ee). Here, it should be particu-
larly emphasized that tuning of electronic property of the catalyst
(6) (a) Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaki, K.; Hayashi,
T. Tetrahedron 1988, 44, 5253. (b) Ito, Y.; Sawamura, M.; Matsuoka, M.;
Matsumoto, Y.; Hayashi, T. Tetrahedron Lett. 1987, 28, 4849.
(7) For recent examples under PTC conditions, see: (a) Lygo, B.; Crosby,
J.; Peterson, J. A. Tetrahedron Lett. 1999, 40, 8671. (b) Belokon, Y. N.; North,
M.; Kublitski, V. S.; Ikonnikov, N. S.; Krasik, P. E.; Maleev, V. I. Tetrahedron
Lett. 1999, 40, 6105. (c) Belokon, Y. N.; Kochetkov, K. A.; Churkina, T. D.;
Ikonnikov, N. S.; Chesnokov, A. A.; Larionov, O. V.; Parmar, V. S.; Kumar,
R.; Kagan, H. B. Tetrahedron: Asymmetry 1998, 9, 851. (d) O’Donnell, J.
M.; Wu, S. Tetrahedron: Asymmetry 1992, 3, 591.
(9) For recent impressive reports on solid-liquid phase-transfer reactions,
see: (a) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T. Chem. Commun. 1999, 49.
(b) Corey, E. J.; Bo, Y.; Busch-Petersen, J. J. Am. Chem. Soc. 1998, 120,
13000. (c) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119,
12414. (d) Eddine, J. J.; Cherqaoui, M. Tetrahedron: Asymmetry 1995, 6,
1225. See also ref 7.
(8) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc. 1999, 121, 6519.
10.1021/ja0007051 CCC: $19.00 © 2000 American Chemical Society
Published on Web 05/16/2000