178 Keglevich et al.
[3] Sienczyk, M.; Oleksyszyn, J. Curr Med Chem 2009,
16, 1673.
[4] Liu, W.; Rogers, C. J.; Fisher, A. J.; Toney, M. D. Bio-
chemistry 2002, 41, 12320.
[5] Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P.
J Med Chem 2003, 46, 2641.
[6] Long, N.; Cai, X. J.; Song, B. A.; Yang, S.; Chen, Z.;
Bhadury, P. S.; Hu, D.Y.; Jin, L. H.; Xue, W. J Agric
Food Chem 2008, 56, 5242.
[7] Hu, D. Y.; Wan, Q. Q.; Yang, S.; Song, B. A.; Bhadury,
P. S.; Jin, L. H.; Yan, K.; Liu, F.; Chen, Z.; Xue, W. J
Agric Food Chem 2008, 56, 998.
[8] Danila, D. C.; Wang, X. Y.; Hubble, H.; Antipin, I. S.;
Pinkhassik, E. Bioorg Med Chem Lett 2008, 18, 2320.
[9] Keglevich, G.; Szekre´nyi, A. Lett Org Chem 2008, 5,
616.
search [26]—as implemented in MacroModel [27]—
involved the random variation (within the range of
0–180◦) of a randomly selected subset of all tor-
sional angles (a minimum of 2◦ and a maximum of
12◦), combined with the variable molecules selection
(MOLS) method for translations and rotations of the
complexing partners with respect to each other. The
combined MCMM/MOLS procedure allowed ran-
◦
˚
dom translation (0–5 A) and rotation (0–180 ) during
a Monte Carlo step. Calculations consisted of 50,000
steps. The perturbed structures were minimized us-
ing a truncated Newton algorithm [28]. Calcula-
tions were carried out using the optimized potential
for liquid simulations 2005 force field [29]. Atomic
charges were calculated by using the electrostatic
potential method [30] from B3LYP/6-31G∗∗ wave
functions of the geometry-optimized noninteracting
partners of each discussed state, using Jaguar [31].
The applied MCMM procedure results in a col-
lection of conformers that span the energy range
specified in the calculation (50 kJ mol−1, in our case).
The low-energy conformers of this set describe an
ensemble that can be expected to shape the macro-
scopic descriptors of the given state. Therefore, in
each case, conclusions were drawn based on trends
that were general within the low-energy conforma-
tions of the given state, which were considered as
such if their conformational energy did not exceed
the global minimum (lowest) energy by more than
8.2 kJ mol−1 (approximately 2 kcal mol−1).
[10] Kabachnik, M. I.; Medved, T. Ya. Dokl Akad Nauk
SSSR 1952, 83, 689; 84, 717.
[11] Fields, E. K. J Am Chem Soc 1952, 74, 1528.
[12] Cherkasov, R. A.; Galkin, V. I. Russ Chem Rev 1998,
67, 857 (Usp Khim 1998, 67, 940; in Russian).
[13] Galkin, V. I.; Zvereva, E. R.; Sobanov, A. A.; Galkina,
I. V.; Cherkasov, R. A. Zh Obshch Khim 1993, 63,
2225.
[14] Keglevich, G.; Fehe´rva´ri, A.; Csontos, I. Heteroat
Chem 2011, 22, 599.
[15] Galkina, I. V.; Sobanov, A. A.; Galkin, V. I.;
Cherkasov, R. A. Russ J Gen Chem. 1998, 68, 1398
(Zh Obshch Khim 1998, 68, 1465; in Russian).
[16] Matveeva, E. D.; Zefirov, N. S. Dokl Chem 2008,
420, 137 (Dokl Akad Nauk 2008, 420, 492; in
Russian).
[17] Galkina, I. V.; Galkin, V. I.; Cherkasov, R. A. Zh
Obshch Khim 1998, 68, 1469.
[18] Gancarz, R.; Gancarz, I. Tetrahedron Lett 1993, 34,
145.
[19] Gancarz, R. Tetrahedron 1995, 51, 10627.
[20] Kabachnik, M. M.; Zobnina, E. V.; Beletskaya, I. P.
Synlett 2005, 1393.
[21] Xu, Y. S.; Yan, K.; Song, B.; Xu, G. F.; Yang, S.; Xue,
W.; Hu, D. Y.; Lu, P. P.; Ouyang, G. P.; Jin, L. H.;
Chen, Z. Molecules 2006, 11, 666.
[22] Xia, M.; Lu, Y. D. Ultrason Sonochem 2007, 14,
235.
[23] Rowe, B. J.; Spiling, C. D. Tetrahedron: Asymmetry
2001, 12, 1701.
Final conformation and energy ordering of the
different states were obtained by DFT gas-phase op-
timization (B3LYP/6-31G**) of characteristic, low-
energy conformers of the force-field calculations
(typically 3–6 low-energy conformers), followed by
further B3LYP/6-311G∗∗++ optimization of the two
best conformers.
[24] Mu, X-J.; Lei, M-Y.; Zou, J-P.; Zhang, W. Tetrahedron
Lett 2006, 47, 1125.
ACKNOWLEDGMENTS
[25] Keglevich, G.; To´th, V. R.; Drahos, L. Heteroat Chem
2011, 22, 15.
[26] Chang, G.; Guida, W. C.; Still, W. C. J Am Chem Soc
1989, 111, 4379.
[27] Mohamadi, F.; Richards, N. G. J.; Guida, W. C.;
Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.;
Hendrikson, T.; Still, W. C. J Comput Chem 1990, 11,
440.
[28] Ponder, J. W.; Richards, F. M. J Comput Chem 1987,
8, 1016.
This work is connected to the scientific program
of the “Development of quality-oriented and har-
monized R + D + I strategy and functional model
at BME” project. This project is supported by the
´
New Hungary Sze´chenyi Plan (Project ID: TAMOP-
4.2.1/B-09/1/KMR-2010-0002). DKM acknowledges
the support of the Bolyai Foundation of the Hun-
garian Academy of Sciences.
[29] Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.;
Jorgensen, W. J. J Phys Chem B 2001, 105, 6474.
[30] Woods, R. J.; Khalil, M.; Pell, W.; Moffat, S.
H.; Smith, V. H., Jr. J Comput Chem 1990, 11,
297.
REFERENCES
[1] Zefirov, N. S.; Matveeva, E. D. Arkivoc 2008, 1, (i).
[2] Kafarski, P.; Lejczak, B. Curr Med Chem Anti-Cancer
Agents 2001, 1, 301.
[31] Jaguar, version 4.1; Schro¨dinger, Inc.: Portland, OR.
Heteroatom Chemistry DOI 10.1002/hc