3294
J. T. Hodgkinson et al. / Tetrahedron Letters 52 (2011) 3291–3294
Chem. Lett. 2008, 18, 5978; (b) Thomas, G. L.; Bohner, C. M.; Williams, H. E.;
Supplementary data
Walsh, C. M.; Ladlow, M.; Welch, M.; Byrant, C. E.; Spring, D. R. Mol. Biosyst.
2006, 2, 132; (c) Persson, T.; Hansen, T. H.; Rasmussen, T. B.; Skinderso, M. E.;
Givskov, M.; Nielsen, J. Org. Biomol. Chem. 2005, 3, 253.
Supplementary data associated with this article can be found, in
11. Chhabra, S. R.; Harty, C.; Hooi, D. S. W.; Daykin, M.; Williams, P.; Telford, G.;
Pritchard, D. I.; Bycroft, B. W. J. Med. Chem. 2003, 46, 97.
12. Xu, F.; Armstrong, J. D.; Zhou, G. X.; Simmons, B.; Hughes, D.; Ge, Z. H.;
Grabowski, E. J. J. J. Am. Chem. Soc. 2004, 126, 13002. Note that this report did
not deal with the synthesis of b-ketoamide AHLs..
References and notes
1. (a) Fuqua, W. C.; Winans, S. C.; Greenberg, E. P. J. Bacteriol. 1994, 176, 269; (b)
Bassler, B. L.; Losick, R. Cell 2006, 125, 237; (c) Fuqua, C.; Parsek, M. R.;
Greenberg, E. P. Annu. Rev. Genet. 2001, 35, 439.
13. (S)-(À)-
in dichloromethane but dissolved readily in acetonitrile.
14. The possibility that may have arisen via water-mediated acid chloride
a-amino-c-butyrolactone hydrobromide (4) was only sparingly soluble
5
2. (a) Boyer, M.; Wisniewski-Dye, F. FEMS Microbiol. Ecol. 2009, 70, 1; (b)
Praneenararat, T.; Geske, G. D.; Blackwell, H. E. Org. Lett. 2009, 11, 4600; (c)
Gonzalez, J. E.; Keshavan, N. D. Microbiol. Mol. Biol. Rev. 2006, 70, 859; (d)
Williams, P. Microbiology 2007, 153, 3923; (e) Sanchez-Contreras, M.; Bauer, W.
D.; Gao, M. S.; Robinson, J. B.; Downie, J. A. Philos. Trans. R. Soc., B 2007, 362,
1149; (f) Williams, P.; Winzer, K.; Chan, W. C.; Camara, M. Philos. Trans. R. Soc., B
2007, 362, 1119.
hydrolysis to the corresponding carboxylic acid followed by coupling to the
amine was discounted by the use of strictly anhydrous reaction conditions.
Increasing the amount of Meldrum’s acid relative to the chloride (in order to
ensure complete consumption of the chloride before addition of the lactone)
and attempts to hydrolyze any acid chloride remaining after the first stage of
the reaction by the use of an aqueous work-up before addition of the lactone
did not prevent formation of significant quantities of 5, thus indicating that by-
product formation occurred via adduct 6 rather than by direct coupling of the
lactone to the acid chloride. Presumably, 5 therefore results via amidation of
the exocylic carbonyl group of the tautomeric form of 6. Chhabra et al. (see ref.
11) reported similar problems when reacting isolated adducts of the general
3. (a) Rasmussen, T. B.; Givskov, M. Microbiology 2006, 152, 895; (b) Popat, R.;
Crusz, S. A.; Diggle, S. P. Br. Med. Bull. 2008, 87, 63.
4. (a) Davies, D. G.; Parsek, M. R.; Pearson, J. P.; Iglewski, B. H.; Costerton, J. W.;
Greenberg, E. P. Science 1998, 280, 295; (b) Bjarnsholt, T.; Jensen, P. O.;
Burmolle, M.; Hentzer, M.; Haagensen, J. A. J.; Hougen, H. P.; Calum, H.;
Madsen, K. G.; Moser, C.; Molin, S.; Hoiby, N.; Givskov, M. Microbiology 2005,
151, 373; (c) Hentzer, M.; Wu, H.; Andersen, J. B.; Riedel, K.; Rasmussen, T. B.;
Bagge, N.; Kumar, N.; Schembri, M. A.; Song, Z. J.; Kristoffersen, P.; Manefield,
M.; Costerton, J. W.; Molin, S.; Eberl, L.; Steinberg, P.; Kjelleberg, S.; Hoiby, N.;
Givskov, M. EMBO J. 2003, 22, 3803; (d) Rasmussen, T. B.; Bjarnsholt, T.;
Skindersoe, M. E.; Hentzer, M.; Kristoffersen, P.; Kote, M.; Nielsen, J.; Eberl, L.;
Givskov, M. J. Bacteriol. 2005, 187, 1799.
5. Geske, G. D.; O’Neill, J. C.; Blackwell, H. E. Chem. Soc. Rev. 2008, 37, 1432.
6. Suga, H.; Smith, K. M. Curr. Opin. Chem. Biol. 2003, 7, 586.
7. Rasmussen, T. B.; Givskov, M. Int. J. Med. Microbiol. 2006, 296, 149.
8. Wu, H.; Song, Z.; Hentzer, M.; Andersen, J. B.; Molin, S.; Givskov, M.; Hoiby, N. J.
Antimicrob. Chemother. 2004, 53, 1054.
9. (a) Galloway, W. R. J. D.; Hodgkinson, J. T.; Bowden, S. D.; Welch, M.; Spring, D.
R. Chem. Rev. 2011, 11, 28. and references therein.; (b) Smith, D.; Wang, J. H.;
Swatton, J. E.; Davenport, P.; Price, B.; Mikkelsen, H.; Stickland, H.; Nishikawa,
K.; Gardiol, N.; Spring, D. R.; Welch, M. Sci. Prog. 2006, 89, 167; (c) Welch, M.;
Dutton, J. M.; Glansdorp, F. G.; Thomas, G. L.; Smith, D. S.; Coulthurst, S. J.;
Barnard, A. M. L.; Salmond, G. P. C.; Spring, D. R. Bioorg. Med. Chem. Lett. 2005,
15, 4235.
10. Persson, T.; Hansen, T. H.; Rasmussen, T. B.; Skinderso, M. E.; Givskov, M.;
Nielsen, J. Org. Biomol. Chem. 2005, 3, 253. For recent selected examples, see:
ref. 11 and:; (a) Geske, G. D.; Mattmann, M. E.; Blackwell, H. E. Bioorg. Med.
form 2 with L-homoserine lactone hydrochloride under basic conditions in
their syntheses of OdDHL analogues. However, the authors reported that these
impurities were easily removed by column chromatography on silica.
15. In addition, Meldrum’s acid adducts of the form 6 have been reported to be
unstable in acid, which may also affect the efficiency of the one-pot process.
See ref. 12 and references therein.
16. Chhabra et al. employed triethylamine in the second step of their ‘two-pot’
synthesis of OdDHL analogues via 5-acyl Meldrum’s acid derivatives isolated
by a standard work-up procedure. See Ref. 11
17. (a) Chhabra, S. R.; Philipp, B.; Eberl, L.; Givskov, M.; Williams, P.; Camara, M.
Extracellular communication in bacteria. In Chemistry of Pheromones and Other
Semiochemicals II; Springer Berlin: Heidelberg, Germany, 2005. Vol. 240, 279.;
(b) Chhabra, S. R.; Stead, P.; Bainton, N. J.; Salmond, G. P. C.; Stewart, G. S. A. B.;
Williams, P.; Bycroft, B. W. J. Antibiot. 1993, 46, 441; (c) Camara, M.; Daykin, M.;
Chhabra, S. R. Meth. Microbiol. 1998, 27, 319; (d) Reverchon, S.; Chantegrel, B.;
Deshayes, C.; Doutheau, A.; Cotte-Pattat, N. Bioorg. Med. Chem. Lett. 2002, 12,
1153.
18. (a) Eberhard, A.; Widrig, C. A.; McBath, P.; Schineller, J. B. Arch. Microbiol. 1986,
146, 35; (b) Schaefer, A. L.; Hanzelka, B. L.; Eberhard, A.; Greenberg, E. P. J.
Bacteriol. 1996, 178, 2897; (c) Oikawa, Y.; Yoshioka, T.; Sugano, K.; Yonemitsu,
O. Org. Synth. 1985, 63, 198.