(imidazolium ring of ImiZIL) - 1345 (TFSI anion of LiTFSI)
- 1056 (sulfonate group of ImiZIL) in region I and 1051
(sulfonate group of ImiZIL) - 1130 (imidazolium ring of
ImiZIL) -1065 (sulfonate group of ImiZIL) - 1121 (imida-
zolium ring of ImiZIL) - 1325, 1309 (TFSI anion of LiTFSI)
in region II. Region I includes four different kinds of imida-
zolium rings and one kind of sulfonate group and TFSI anion,
while region II has two different kinds of imidazolium rings
and two kinds of sulfonate groups and TFSI anions. There-
fore, significantly different variations of sequential spectra
intensity in regions I and II confirm ion transport in respective
dynamic environments created by two conduction pathways.
In summary, we have demonstrated the dynamics and trans-
ition behavior of lithium ion transport of binary crystalline ionic
gel electrolytes due to the changes in the crystal structures and
interaction fields. The analytical method suggested herein pro-
vides a useful and powerful way to capture the transition of
physical, chemical, and biological properties and to monitor the
dynamics in the complex system from a fundamental perspective.
We gratefully acknowledge Genome-based Integrated Bio-
process Project of the Ministry of Science and Technology of Korea.
Notes and references
1 A. C. Grimsdale and K. Mullen, Angew. Chem., Int. Ed., 2005, 44,
¨
5592; T. N. G. Row, Coord. Chem. Rev., 1999, 183, 81; J. M. Lehn,
Supramolecular Chemistry: Concepts and Perspectives, VCH,
Weinheim, 1995; G. R. Desiraju, Crystal Engineering: The Design
Fig. 3 (a) Synchronous and (b) asynchronous 2D correlation spectra
of the ImiZIL-rich phase. The inset of (b) is the zoomed image in the
range of 1100–1250 cmÀ1. (c) Synchronous and (d) asynchronous 2D
correlation spectra of the LiTFSI-rich phase.
of Organic Solids, Elsevier, Amsterdam, 1989; C. B. Aakeroy and
K. R. Seddon, Chem. Soc. Rev., 1993, 22, 397.
¨
2 Z. Gadjourova, Y. G. Andreev, D. P. Tunstall and P. G. Bruce,
Nature, 2001, 412, 520; C. Zhang, Y. G. Andreev and P. G. Bruce,
Angew. Chem., Int. Ed., 2007, 46, 2848; Y. Abu-Lebdeh, P.-J. Alarco
and M. Armand, Angew. Chem., Int. Ed., 2003, 42, 4499;
D. R. MacFarlane and M. Forsyth, Adv. Mater., 2001, 13, 957.
3 Y. Fukaya, K. Sekikawa, K. Murata, N. Nakamura and H. Ohno,
Chem. Commun., 2007, 3089; J. Wang, H. Wang, S. Zhang,
H. Zhang and Y. Zhao, J. Phys. Chem. B, 2007, 111, 6181.
4 I. Goodchild, L. Collier, S. L. Millar, I. Prokes, J. C. D. Lord,
C. P. Butts, J. Bowers, J. R. P. Webster and R. K. Heenan,
J. Colloid Interface Sci., 2007, 307, 455; R. Atkin and
G. G. Warr, J. Phys. Chem. B, 2007, 111, 9309.
5 T. Welton, Chem. Rev., 1999, 99, 2071; J. Dupont, R. F. de Souza
and P. A. Z. Suarez, Chem. Rev., 2002, 102, 3667; M. C. Buzzeo,
R. G. Evans and R. G. Compton, ChemPhysChem, 2004, 5, 1106;
L. A. Blanchard, D. Hancu, E. J. Beckman and J. F. Brennecke,
Nature, 1999, 399, 28.
due to the conformational changes, which is commonly known as
the butterfly pattern. The interrelation of conformational changes
attributed to the intermolecular interactions is derived from the
cross bands located at off-diagonal positions of a synchronous 2D
correlation spectrum, as it reveals simultaneous or coincidental
changes of spectral intensities that are observed at two different
spectral variables (n1 and n2).9 The positive cross bands at (1348,
1177) cmÀ1, (1137, 1177) cmÀ1 and (1054, 1177) cmÀ1 in the
synchronous 2D correlation spectrum in region I demonstrate
that the change of spectral intensity at 1177 cmÀ1 is strongly
interrelated with those at 1348 cmÀ1, 1137 cmÀ1 and 1054 cmÀ1
.
The conformational changes of the imidazolium rings were
derived from those of the TFSI anions of LiTFSIs and/or the
sulfonate groups of ImiZILs via hydrogen bonding. In the case of
region II, one band near 1196 cmÀ1 reveals the same interrelation
among conformations as region I, while the other band at
1170 cmÀ1 exhibits a reciprocal behavior of simultaneous spectra
variation. It means that the dynamic behavior of the additional
band in region II induces the mechanism of lithium ion conduc-
tion differently from that in region I, providing more complex
interaction fields in the LiTFSI-rich phase.
6 M. Yoshizawa, M. Hirao, K. Ito-Akita and H. Ohno, J. Mater.
Chem., 2001, 11, 1057; C. Tiyapiboonchaiya, J. M. Pringle, J. Sun,
N. Byrne, P. C. Howlett, D. R. MacFarlane and M. Forsyth,
Nat. Mater., 2004, 3, 29; N. Byrne, P. C. Howlett,
D. R. MacFarlane and M. Forsyth, Adv. Mater., 2005, 17, 2497.
7 T. Koddermann, C. Wertz, A. Heintz and R. Ludwig, Angew. Chem.,
¨
Int. Ed., 2006, 45, 3697; S. Rivera-Rubero and S. Baldelli, J. Am.
Chem. Soc., 2004, 126, 11788; Y. Zhao, S. Gao, J. Wang and J. Tang,
J. Phys. Chem. B, 2008, 112, 2031; A. Mele, C. D. Tran and S. H.
D. Lacerda, Angew. Chem., Int. Ed., 2003, 42, 4364.
8 B. G. M. Vadeginste, D. L. Massart, L. M. C. Buydens, S. De
Jong, P. J. Lewi and J. Smeyers-Verbeke, Handbook of
Chemometrics and Qualimetrics: Part B, Elsevier Science B. V.,
Amsterdam, The Netherlands, 1998, p. 88.
9 Y. Ozaki and I. Noda, Two-Dimensional Correlation Spectroscopy:
Applications in Vibrational Spectroscopy, John Wiley & Sons, Inc.,
New York, 2004; I. Noda, Appl. Spectrosc., 1993, 47, 1329.
10 H. S. Kim, J. Y. Bae, S. J. Park, H. Lee, H. W. Bae, S. O. Kang,
S. D. Lee and D. K. Choi, Chem.–Eur. J., 2007, 13, 2655.
11 E. Staunton, Y. G. Andreev and P. G. Bruce, J. Am. Chem. Soc.,
2005, 127, 12176; A. M. Christie, S. J. Lilley, E. Stauton,
Y. G. Andreev and P. G. Bruce, Nature, 2005, 433, 50.
In order to clarify different conduction mechanisms of the
two regions, respective kinetics of conformational changes
should be verified. Asynchronous 2D correlation spectra con-
sisting of only cross bands provide information that is useful
to interpret the kinetics of the chemical/physical reactions
owing to the relative temporal relationship and the actual
sequence of individual reaction processes.9 Consequently, an
analysis of asynchronous 2D correlation in the two regions
shows the following sequence of changes in spectral intensities
by resolving overlapped bands: 1154, 1121, 1137, 1183
12 E. D. R. MacFarlane, J. Huang and M. Forsyth, Nature, 1999, 402, 792.
ꢀc
This journal is The Royal Society of Chemistry 2009
6390 | Chem. Commun., 2009, 6388–6390