8
864
S. Akine et al. / Tetrahedron Letters 42 (2001) 8861–8864
hydrogen bonding to four oxygen atoms of 1 because
of complementary geometrical fit. Compound
2. Li, Z.; Jablonski, C. Chem. Commun. 1999, 1531.
3. Ready, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2001,
123, 2687.
4. Korupoju, S. R.; Mangayarkarasi, N.; Ameerunisha, S.;
Valente, E. J.; Zacharias, P. S. J. Chem. Soc., Dalton
Trans. 2000, 2845.
5. (a) van Staveren, C. J.; van Eerden, J.; van Veggel, F.
C. J. M.; Harkema, S.; Reinhoudt, D. N. J. Am. Chem.
Soc. 1988, 110, 4994; (b) van Doorn, A. R.; Schaafstra,
R.; Bos, M.; Harkema, S.; van Eerden, J.; Verboom,
W.; Reinhoudt, D. N. J. Org. Chem. 1991, 56, 6083.
1
adopted a shallow bowl conformation with all the six
hydroxyl groups sticking out to the same side. Rather
long O(water)–O(catechol) distances (2.94–3.02 A) sug-
,
gest delocalization of protons in ways like O···H···N
and O···H···O.
Selective formation of cyclic compound 1 is probably
explained by stabilization of the favorable conforma-
tion of the transition state and/or intermediates in the
cyclization due to intramolecular hydrogen bonds.
6
. For macrocyclic bis(H salen) or bis(H saloph) deriva-
2 2
1
The initial cyclization process was monitored by H
tives reported so far, see: (a) Moneta, W.; Baret, P.;
Pierre, J.-L. J. Chem. Soc., Chem. Commun. 1985, 899;
NMR spectroscopy in CD CN. Only two compounds
3
(
major and minor, 4:1) were formed (Scheme 2). The
(
b) Moneta, W.; Baret, P.; Pierre, J.-L. Bull. Soc. Chim.
major component was easily assigned to be 1:1 adduct
6
Fr. 1988, 995; (c) van Veggel, F. C. J. M.; Bos, M.;
Harkema, S.; Verboom, W.; Reinhoudt, D. N. Angew.
Chem., Int. Ed. Engl. 1989, 28, 746; (d) van Veggel, F.
C. J. M.; Bos, M.; Harkema, S.; van de Bovenkamp, H.;
Verboom, W.; Reedijk, J.; Reinhoudt, D. N. J. Org.
Chem. 1991, 56, 225; (e) P e´ rez, M. A.; Bermejo, J. M. J.
Org. Chem. 1993, 58, 2628; (f) Houjou, H.; Lee, S.-K.;
Hishikawa, Y.; Nagawa, Y.; Hiratani, K. Chem. Com-
mun. 2000, 2197.
ꢀꢀ
, and the minor component was considered to be a
linear 2:2 adduct 7. It is noteworthy that hydroxyl
protons of the salicylaldimine moieties were observed
at 13.5 and 13.2 ppm during the course of the reac-
tion, indicating existence of strong hydrogen bonds.
The conformation of the precursor 8 is restricted by
multiple hydrogen bonds in such a way that the amino
group can easily attack the formyl group. The driving
force for formation of the cyclic trimer is considered
to be the extremely low solubility of the product in
acetonitrile,** as well as the multiple hydrogen bonds
as mentioned above.
7. Huck, W. T. S.; van Veggel, F. C. J. M.; Reinhoudt, D.
N. Recl. Trav. Chim. Pays-Bas 1995, 114, 273.
8. Recently,
a chiral triangular macrocyclic hexaimine
without a hydroxyl group has been reported, see:
Gawronski, J.; Kolbon, H.; Kwit, M.; Katrusiak, A. J.
Org. Chem. 2000, 65, 5768.
It is well known that the oxygen atoms of metal com-
plexes of salen-type ligands have anionic character,
which sometimes enhances coordination strength to
9
. Macrocyclic tris(catechol) derivatives with C symmetry
3
1
2
bind Fe(III), see: Rodgers, S. J.; Ng, C. Y.; Raymond,
K. N. J. Am. Chem. Soc. 1985, 107, 4094.
other metal ions. We are currently investigating the
synthesis of transition metal complexes of 1 and
10. Crowther, G. P.; Sundberg, R. J.; Sarpeshkar, A. M. J.
Org. Chem. 1984, 49, 4657.
preparing more soluble tris(H saloph) as a sophisti-
2
cated host molecule by introducing hydrophobic
groups such as an alkyl chain into the benzene rings
of 1.
1
1. A number of macrocyclic compounds carrying water
molecules have been reported so far, for example:
Gokel, G. W.; Garcia, B. J. Tetrahedron Lett. 1977, 18,
317.
1
2. For example, see: Cunningham, D.; McArdle, P.;
Mitchell, M.; Chonchubhair, N. N.; O’Gara, M.;
Franceschi, F.; Floriani, C. Inorg. Chem. 2000, 39, 1639.
References
1
. (a) Guerriero, P.; Tamburini, S.; Vigato, P. A. Coord.
Chem. Rev. 1995, 139, 17; (b) Pilkington, N. H.; Rob-
son, R. Aust. J. Chem. 1970, 23, 2225.
13. Sheldrick, G. M. SHELXL-97. Program for crystal
structure refinement, University of G o¨ ttingen, 1997.
ꢀꢀ 1
H NMR signals assigned to intermediate 6 are as follows (400
MHz, CD CN): l=4.4 (brs, 2H), 6.74 (td, J=7.6, 1.2 Hz, 1H),
3
6
.82 (dd, J=7.6, 1.2 Hz, 1H), 7.10 (td, J=7.6, 1.2 Hz, 1H), 7.17
(
dd, J=7.6, 1.2 Hz, 1H), 7.20 (d, J=8.4 Hz, 1H), 7.27 (d, J=8.4
Hz, 1H), 8.78 (s, 1H), 10.02 (s, 1H), 10.5 (brs, 1H), 13.5 (brs, 1H).
* The product was also insoluble in chloroform, methanol, and
water.
*