The Journal of Physical Chemistry B
Article
Increase in Viscosity Upon Complexation with CO From Molecular
(29) Besnard, M.; Cabaco
̧
, M. I.; Chav
́
ez, F. V.; Pinaud, N. On the
2
Simulation. J. Am. Chem. Soc. 2008, 130, 14690−14704.
Spontaneous Carboxylation of 1-Butyl-3-Methylimidazolium Acetate
by Carbon Dioxide. Chem. Commun. 2012, 48, 1245−1247.
(30) Seo, S.; DeSilva, M. A.; Brennecke, J. F. Physical Properties and
(
10) Gurkan, B.; Goodrich, B. F.; Mindrup, E. M.; Ficke, L. E.;
Massel, M.; Seo, S.; Senftle, T. P.; Wu, H.; Glaser, M. F.; Shah, J. K.;
et al. Molecular Design of High Capacity, Low Viscosity, Chemically
CO
with Aprotic Heterocyclic Anions. J. Phys. Chem. B 2014, 118, 14870−
4879.
31) Gohndrone, T. R.; Lee, B. T.; DeSilva, M. A.; Quiroz-Guzman,
Reaction Pathway of 1-Ethyl-3-Methylimidazolium Ionic Liquids
2
Tunable Ionic Liquids for CO Capture. J. Phys. Chem. Lett. 2010, 1,
2
1
(
3
(
494−3499.
11) Wu, H.; Shah, J. K.; Tenney, C. M.; Rosch, T. W.; Maginn, E. J.
M.; Schneider, W. F.; Brennecke, J. F. Competing Reactions of CO2
With Cations and Anions in Azolide Ionic Liquids. ChemSusChem
Structure and Dynamics of Neat and CO -Reacted Ionic Liquid
2
Tetrabutylphosphonium 2-Cyanopyrrolide. Ind. Eng. Chem. Res. 2011,
2
(
014, 7, 1970−1975.
5
(
0, 8983−8993.
32) Hamilton, P. A.; Murrells, T. P. Kinetics and Mechanism of the
12) Xie, W.; Xie, R.; Pan, W.-P.; Hunter, D.; Koene, B.; Tan, L.-S.;
3
4
Reactions of PH With O( P) and N( S) Atoms. J. Chem. Soc., Faraday
Vaia, R. Thermal Stability of Quaternary Phosphonium Modified
3
Trans. 2 1985, 81, 1531−1541.
Montmorillonites. Chem. Mater. 2002, 14, 4837−4845.
(33) Lee, B. I.; Kesler, M. G. A Generalized Thermodynamic
(
13) Wooster, T. J.; Johanson, K. M.; Fraser, K. J.; MacFarlane, D. R.;
Correlation Based on Three-Parameter Corresponding States. AIChE
Scott, J. L. Thermal Degradation of Cyano Containing Ionic Liquids.
J. 1975, 21, 510−527.
Green Chem. 2006, 8, 691−696.
(34) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.; Watanabe, M.
(
14) Cassity, C. G.; Mirjafari, A.; Mobarrez, N.; Strickland, K. J.;
Physicochemical Properties and Structures of Room Temperature
Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium
Cation. J. Phys. Chem. B 2005, 109, 6103−6110.
O’Brien, R. A.; Davis, J. H. Ionic Liquids of Superior Thermal Stability.
Chem. Commun. 2013, 49, 7590−7592.
(
15) Bradaric, C. J.; Downard, A.; Kennedy, C.; Robertson, A. J.;
(35) Yoshii, K.; Yamaji, K.; Tsuda, T.; Tsunashima, K.; Yoshida, H.;
Zhou, Y. Industrial Preparation of Phosphonium Ionic Liquids. Green
Chem. 2003, 5, 143−152.
Ozaki, M.; Kuwabata, S. Physicochemical Properties of Tri-N-
Butylalkylphosphonium Cation-Based Room-Temperature Ionic
Liquids. J. Phys. Chem. B 2013, 117, 15051−15059.
(
16) Seo, S.; Simoni, L. D.; Ma, M.; DeSilva, M. A.; Huang, Y.;
Stadtherr, M. A.; Brennecke, J. F. Phase-Change Ionic Liquids for
(36) Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.;
Postcombustion CO Capture. Energy Fuels 2014, 28, 5968−5977.
2
Brennecke, J. F. Thermophysical Properties of Imidazolium-Based
(
17) Eisinger, R. S.; Keller, G. E., II. Process for CO Capture Using
2
Ionic Liquids. J. Chem. Eng. Data 2004, 49, 954−964.
Ionic Liquid That Exhibits Phase Change. Energy Fuels 2014, 28,
070−7078.
18) Gurkan, B. E.; Gohndrone, T. R.; McCready, M. J.; Brennecke,
(37) Fang, D. W.; Guan, W.; Tong, J.; Wang, Z. W.; Yang, J. Z. Study
7
(
on Physicochemical Properties of Ionic Liquids Based on Alanine
[
C mim][Ala] (n= 2,3,4,5,6). J. Phys. Chem. B 2008, 112, 7499−7505.
n
J. F. Reaction Kinetics of CO Absorption in to Phosphonium Based
2
(38) Tariq, M.; Forte, P. A. S.; Gomes, M. F. C.; Lopes, J. N. C.;
Anion-Functionalized Ionic Liquids. Phys. Chem. Chem. Phys. 2013, 15,
Rebelo, L. P. N. Densities and Refractive Indices of Imidazolium- and
Phosphonium-Based Ionic Liquids: Effect of Temperature, Alkyl
Chain Length, and Anion. J. Chem. Thermodyn. 2009, 41, 790−796.
(39) Kagimoto, J.; Taguchi, S.; Fukumoto, K.; Ohno, H. Hydro-
phobic and Low-Density Amino Acid Ionic Liquids. J. Mol. Liq. 2010,
7
(
796−7811.
19) Brown, P.; Gurkan, B. E.; Hatton, T. A. Enhanced Gravimetric
CO Capacity and Viscosity for Ionic Liquids with Cyanopyrrolide
2
Anion. AIChE J. 2015, 61, 2280−2285.
(
20) Xu, W.; Cooper, E. I.; Angell, C. A. Ionic Liquids: Ion
1
53, 133−138.
Mobilities, Glass Temperatures, and Fragilities. J. Phys. Chem. B 2003,
07, 6170−6178.
21) Yee, P.; Shah, J. K.; Maginn, E. J. State of Hydrophobic and
(40) Shannon, M. S.; Bara, J. E. Properties of Alkylimidazoles as
1
(
Solvents for CO Capture and Comparisons to Imidazolium-Based
2
Ionic Liquids. Ind. Eng. Chem. Res. 2011, 50, 8665−8677.
(41) Tsunashima, K.; Kawabata, A.; Matsumiya, M. Low Viscous and
Highly Conductive Phosphonium Ionic Liquids Based on Bis-
(Fluorosulfonyl)Amide Anion as Potential Electrolytes. Electrochem.
Commun. 2011, 13, 178−181.
(42) Vogel, H. The Temperature Dependence Law of the Viscosity
of Fluids. Phys. Z. 1921, 22, 645−646.
(43) Ueno, K.; Tokuda, H.; Watanabe, M. Ionicity in Ionic Liquids:
Correlation with Ionic Structure and Physicochemical Properties. Phys.
Chem. Chem. Phys. 2010, 12, 1649−1658.
(44) Fraser, K. J.; Izgorodina, E. I.; Forsyth, M.; Scott, J. L.;
MacFarlane, D. R. Liquids Intermediate Between “Molecular” and
Hydrophilic Ionic Liquids in Aqueous Solutions: Are the Ions Fully
Dissociated? J. Phys. Chem. B 2013, 117, 12556−12566.
(
22) MacFarlane, D. R.; Forsyth, M.; Izgorodina, E. I.; Abbott, A. P.;
Annat, G.; Fraser, K. On the Concept of Ionicity in Ionic Liquids. Phys.
Chem. Chem. Phys. 2009, 11, 4962−4967.
(
23) Xu, D.; Yang, Q.; Su, B.; Bao, Z.; Ren, Q.; Xing, H. Enhancing
the Basicity of Ionic Liquids by Tuning the Cation−Anion Interaction
Strength and via the Anion-Tethered Strategy. J. Phys. Chem. B 2014,
1
(
18, 1071−1079.
24) Holloczki, O.; Kelemen, Z.; Ko
́
̈
nczo
̈
l, L.; Szieberth, D.; Nyulas
́
zi,
L.; Stark, A.; Kirchner, B. Significant Cation Effects in Carbon
“
Ionic” Liquids: Liquid Ion Pairs? Chem. Commun. 2007, 0, 3817−
819.
45) Aki, S. N. V. K.; Mellein, B. R.; Saurer, E. M.; Brennecke, J. F.
Dioxide-Ionic Liquid Systems. ChemPhysChem 2013, 14, 315−320.
3
(
(
25) Rodríguez, H.; Gurau, G.; Holbrey, J. D.; Rogers, R. D. Reaction
of Elemental Chalcogens with Imidazolium Acetates to Yield
Imidazole-2-Chalcogenones: Direct Evidence for Ionic Liquids as
Proto-Carbenes. Chem. Commun. 2011, 47, 3222−3224.
High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-
Based Ionic Liquids. J. Phys. Chem. B 2004, 108, 20355−20365.
(46) Shariati, A.; Peters, C. J. High-Pressure Phase Behavior of
(
26) Gurau, G.; Rodríguez, H.; Kelley, S. P.; Janiczek, P.; Kalb, R. S.;
Systems with Ionic Liquids: II. the Binary System Carbon Dioxide+1-
Ethyl-3-Methylimidazolium Hexafluorophosphate. J. Supercrit. Fluids
Rogers, R. D. Demonstration of Chemisorption of Carbon Dioxide in
1,3-Dialkylimidazolium Acetate Ionic Liquids. Angew. Chem., Int. Ed.
2
(
004, 29, 43−48.
2
(
011, 50, 12024−12026.
47) Yunus, N. M.; Mutalib, M. I. A.; Man, Z.; Bustam, M. A.;
27) Shiflett, M. B.; Elliott, B. A.; Lustig, S. R.; Sabesan, S.; Kelkar, M.
Murugesan, T. Solubility of CO in Pyridinium Based Ionic Liquids.
2
S.; Yokozeki, A. Phase Behavior of CO In Room-Temperature Ionic
2
Chem. Eng. J. 2012, 189, 94−100.
Liquid 1-Ethyl-3-Ethylimidazolium Acetate. ChemPhysChem 2012, 13,
(48) Goodrich, B. F.; de la Fuente, J. C.; Gurkan, B. E.; Lopez, Z. K.;
1
(
806−1817.
Price, E. A.; Huang, Y.; Brennecke, J. F. Effect of Water and
Temperature on Absorption of CO By Amine-Functionalized Anion-
Tethered Ionic Liquids. J. Phys. Chem. B 2011, 115, 9140−9150.
28) Cabac o̧ , M. I.; Besnard, M.; Danten, Y.; Coutinho, J. A. P.
2
Carbon Dioxide in 1-Butyl-3-Methylimidazolium Acetate. I. Unusual
Solubility Investigated by Raman Spectroscopy and DFT Calculations.
J. Phys. Chem. A 2012, 116, 1605−1620.
1
1814
J. Phys. Chem. B 2015, 119, 11807−11814