Communication
Dalton Transactions
S. Goswami, A. Manna, S. Paul, K. Aich, A. K. Das and
S. Chakraborty, Dalton Trans., 2013, 42, 8078; S. Goswami,
S. Paul and A. Manna, RSC Adv., 2013, DOI: 10.1039/
c3ra40984h.
2 H. H. B. Wiseman, Biochem. J., 1996, 313, 17–29;
K. J. Barnham, C. L. Masters and A. I. Bush, Nat. Rev. Drug
Discovery, 2004, 3, 205–214; J. M. McCord, Science, 1974,
185, 529–531.
3 E. Hidalgo, R. Bartolome and C. Dominguez, Chem.-Biol.
Interact., 2002, 139, 265; D. I. Pattison and M. J. Davies,
Chem. Res. Toxicol., 2001, 14, 1453; P. J. O’Brien, Chem.-
Biol. Interact., 2000, 129, 113.
4 E. A. Podrez, H. M. Abu-Soud and S. L. Hazen, Free Radical
Biol. Med., 2000, 28, 1717; D. I. Pattison and M. J. Davies,
Biochemistry, 2006, 45, 8152.
Fig. 5 (i) Photograph of the TLC plates of the CDH in various concentrations of
OCl− (×10−3 M) (a) 0, (b) 5, (c) 9, (d) 11. (ii) Competition fluorescence emission
spectra of CDH (c = 2.0 × 10−5 M) itself, in the presence of 100 µL, 200 µL tap
water at pH 7.4 in CH3CN–H2O (4 : 6, v/v).
5 D. I. Pattison and M. J. Davies, Biochemistry, 2005, 44, 7378;
D. I. Pattison, C. L. Hawkins and M. J. Davies, Biochemistry,
2007, 46, 9853.
6 E. Hidalgo, R. Bartolome and C. Dominguez, Chem.-Biol.
Interact., 2002, 139, 265–282.
system gave no fluorescence response to the deionized water
(Fig. S7†). Thus, deionized water samples had no interference
in the performance of this sensing system. Nevertheless, the
addition of tap water (100 μL) led to a significant increase in
the fluorescence intensity of the sensing system, and a bigger
change was observed when increasing the amount of tap water
(Fig. 5(ii)), which further revealed that such a sensing system
was sensitive towards hypochlorite, even in real water samples.
The concentration of hypochlorite in tap water was determined
to be 0.256 mol L−1 from comparing the fluorescence intensity
of the CDH in the presence of tap water with the titration data.
In conclusion, a new carbazole based “naked eye” and ratio-
metric fluorescence probe, CDH, was developed for selective
and rapid detection of OCl− at physiological pH of 7.4 in
aqueous media. The chemical reaction was fast at room temp-
erature and irreversible. In this reaction, the addition of OCl−
to the CDH disrupted the ICT mechanism by opening a new
avenue for the development of a fluorescence turn-on chemo-
dosimeter for OCl−. This chemodosimeter is also a good can-
didate with great potential for the selective detection of OCl−
in the presence of different common ions and oxidants. It also
showed good performance in tap water samples.
7 T. Aokl and M. Munemorl, Continuous flow determination
of free chlorine in water, Anal. Chem., 1983, 55, 209–212.
8 L. C. Adam and G. Gordon, Anal. Chem., 1995, 67, 535–540.
9 L. Moberg and B. Karlberg, Anal. Chim. Acta, 2000, 407,
127–133; J. G. March, M. Gual and B. M. Simonet, Talanta,
2002, 58, 995–1001; J. Ballesta-Claver, M. C. Valencia-Mirón
and L. F. Capitán-Vallvey, Anal. Chim. Acta, 2004, 522, 267–
273; E. Pobozy, K. Pyrzynska, B. Szostek and
M. Trojanowicz, Microchem. J., 1995, 51, 379–386.
10 Z. Takats, K. J. Koch and R. G. Cooks, Anal. Chem., 2001,
73, 4522–4529; H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim
and J. Yoon, Chem. Soc. Rev., 2008, 37, 1465–1472;
D. T. Quang and J. S. Kim, Chem. Rev., 2010, 110, 6280–
6301.
11 G. Chen, F. Song, J. Wang, Z. Yang, S. Sun, J. Fan, X. Qiang,
X. Wang, B. Dou and X. Peng, Chem. Commun., 2012, 48,
2949–2951; X. Chen, K. A. Lee, E. M. Ha, K. M. Lee,
Y. Y. Seo, H. K. Choi, H. N. Kim, M. J. Kim, C. S. Cho,
S. Y. Lee, W. J. Lee and J. Yoon, Chem. Commun., 2011, 47,
4373–4375; Y. K. Yang, H. J. Cho, J. Lee, I. Shin and J. Tae,
Org. Lett., 2009, 11, 859–861; X. D. Lou, Y. Zhang, Q. Q. Li,
J. G. Qin and Z. Li, Chem. Commun., 2011, 47, 3189–3191;
B. Wang, P. Li, F. Yu, P. Song, X. Sun, S. Yang, Z. Lou and
K. Hun, Chem. Commun., 2013, 49, 1014; Z. Lou, P. Li,
Q. Pan and K. Han, Chem. Commun., 2013, 49, 2445;
J. Zhang and X. Yang, Analyst, 2013, 138, 434–437;
A. P. Singh, O. G. Tsay, D. P. Murale, T. Jun, H. Liew,
W. H. Suh and D. G. Churchill, Analyst, 2013, 138, 2829–
2832; X. Lou, Y. Zhang, J. Qin and Z. Li, Sens. Actuators, B,
2012, 161, 229–234; F. J. Huo, J. J. Zhang and Y. T. Yang,
Sens. Actuators, B, 2012, 166–167, 44–49; L. Gai, J. Mack,
H. Liu, Z. Xu, H. Lu and Z. Li, Sens. Actuators, B, 2013, 182,
1–6; X. Zhang, Y. Zhang and Z. Zhu, Anal. Methods, 2012, 4,
4334–4338.
The authors thank the DST and CSIR (Government of India)
for the financial support. S. P. and A. M. acknowledge the UGC
and CSIR respectively for providing fellowships.
Notes and references
1 A. P. de Silva, H. Q. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and
T. E. Rice, Chem. Rev., 1997, 97, 1515–1566; L. Fabrizzi and
A. Poggi, Chem. Soc. Rev., 1995, 24, 197–202; R. Martinez-
Manez and F. Sancenon, Chem. Rev., 2003, 103, 4419–4476;
R. Martinez-Manez and F. Sancenon, Coord. Chem. Rev.,
2006, 250, 3081–3093; T. Gunnlaugsson, M. Glynn,
G. M. Tocci, P. E. Kruger and F. M. Pfeffer, Coord. Chem.
Rev., 2006, 250, 3094–3117; S. Goswami, A. Manna, S. Paul,
A. K. Das, K. Aich and P. K. Nandi, Chem. Commun., 2013,
49, 2912; S. Goswami, A. Manna, S. Paul, K. Aich, A. K. Das 12 G. Grynkiewicz, M. Poenie and R. Y. Tsien, J. Biol. Chem.,
and S. Chakraborty, Tetrahedron Lett., 2013, 54, 1785;
1985, 260, 3440; A. P. Demchenko, J. Fluoresc., 2010, 20,
10100 | Dalton Trans., 2013, 42, 10097–10101
This journal is © The Royal Society of Chemistry 2013