Macromolecules
Article
(9) Zhu, M.; Zhu, L.; Han, J. J.; Wu, W.; Hurst, J. K.; Li, A. D. Q.
Spiropyran-Based Photochromic Polymer Nanoparticles with Optically
Switchable Luminescence. J. Am. Chem. Soc. 2006, 128, 4303−4309.
(10) Lv, Y.; Liu, H.; Zhao, B.; Tian, Z.; Li, A. D. Q. Tuning
Photoswitchable Dual-Color Fluorescence from Core-Shell Polymer
Nanoparticles. Isr. J. Chem. 2013, 53, 294−302.
(11) Tian, W.; Tian, J. An insight into the solvent effect on photo-,
solvato-chromism of spiropyran through the perspective of intermo-
lecular interactions. Dyes Pigm. 2014, 105, 66−74.
(12) Liu, Y.; Wu, J.; Meng, L.; Zhang, L.; Lu, X. Self-assembled,
fluorescent polymeric micelles of a graft copolymer containing carbazole
for thermo-controlled drug delivery in vitro. J. Biomed. Mater. Res., Part B
2008, 85B, 435−443.
(13) Chang, C.-C.; Kuo, I.-C.; Ling, I.-F.; Chen, C.-T.; Chen, H.-C.;
Lou, P.-J.; Lin, J.-J.; Chang, T.-C. Detection of quadruplex DNA
structures in human telomeres by a fluorescent carbazole derivative.
Anal. Chem. 2004, 76, 4490−4494.
(14) Palayangoda, S. S.; Cai, X.; Adhikari, R. M.; Neckers, D. C.
Carbazole-based donor-acceptor compounds: highly fluorescent
organic nanoparticles. Org. Lett. 2008, 10, 281−284.
(15) van Dijken, A.; Bastiaansen, J. J. A. M.; Kiggen, N. M. M.;
Langeveld, B. M. W.; Rothe, C.; Monkman, A.; Bach, I.; Stossel, P.;
Brunner, K. Carbazole Compounds as Host Materials for Triplet
Emitters in Organic Light-Emitting Diodes: Polymer Hosts for High-
Efficiency Light-Emitting Diodes. J. Am. Chem. Soc. 2004, 126, 7718−
7727.
(16) Yoon, S.-J.; Chun, H.; Lee, M.-S.; Kim, N. Preparation of poly (N-
vinylcarbazole) (PVK) nanoparticles by emulsion polymerization and
PVK hollow particles. Synth. Met. 2009, 159, 518−522.
(17) Morin, J.-F.; Leclerc, M. Syntheses of conjugated polymers
derived from N-alkyl-2, 7-carbazoles. Macromolecules 2001, 34, 4680−
4682.
fluorescence and UV−vis analysis showed that the fluorescence
emission of AzoCzEA (λmax = 530 nm) overlapped appropriately
with the absorption band of SPEA (λmax of 550 nm after UV
irradiation at 365 nm). The optimized NP2 latex revealed a green
emission at 530 nm after excitation at 410 nm. Upon UV
irradiation at 365 nm, the above green fluorescence emission was
quenched and a red fluorescence at 630 nm was observed.
Maximum efficiency of nonradiative energy transfer for
quenching of the fluorescence emission was obtained the in
these dual-color fluorescent nanoparticles. The covalent bonding
between AzoCzEA, SPEA, and MMA in the polymeric matrix
was identified by thermal analysis and this was responsible for the
structural stability and preventing dye leakage as the main
concern in such systems. However, internal conversions with
surrounding environment were controlled by inclusion of the
chromophores and their fixation in the polymer. Investigations
on reversibility and fluorescence photoswitching of the prepared
dual-color latexes depict their prominent photostability and
excellent fatigue resistance with no leaching and aggregation of
the chromophores. These dual-color photoswitchable fluores-
cent nanoparticles could be exploited in biological systems such
cell labeling and cell imaging with fluorescence tracing capability,
rewriteable patterning, and photosensitive displays.
AUTHOR INFORMATION
■
Corresponding Author
*Telephone: +9821 4478 7000. Fax: +9821 4478 7023. E-mail:
Notes
(18) Tsutsumi, N.; Kinashi, K.; Ogo, K.; Fukami, T.; Yabuhara, Y.;
Kawabe, Y.; Tada, K.; Fukuzawa, K.; Kawamoto, M.; Sassa, T.; Fujihara,
T.; Sasaki, T.; Naka, Y. Updatable Holographic Diffraction of
Monolithic Carbazole-Azobenzene Compound in Poly (methyl
methacrylate) Matrix. J. Phys. Chem. C 2015, 119, 18567−18572.
(19) Grazulevicius, J. V.; Strohriegl, P.; Pielichowski, J.; Pielichowski,
K. Carbazole-containing polymers: synthesis, properties and applica-
tions. Prog. Polym. Sci. 2003, 28, 1297−1353.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We wish to express our gratitude to Iran Polymer and
Petrochemical Institute (IPPI) for financial support of this
work (Grant No. 24761172).
(20) Zhang, B.; Chen, Y.; Zhuang, X.; Liu, G.; Yu, B.; Kang, E.-T.; Zhu,
J.; Li, Y.L. Poly (N-vinylcarbazole) chemically modified graphene oxide.
J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2642−2649.
(21) Adhikari, R. M.; Mondal, R.; Shah, B. K.; Neckers, D. C. Synthesis
and photophysical properties of carbazole-based blue light-emitting
dendrimers. J. Org. Chem. 2007, 72, 4727−4732.
(22) Liu, Y.; Nishiura, M.; Wang, Y.; Hou, Z. π-Conjugated aromatic
enynes as a single-emitting component for white electroluminescence. J.
Am. Chem. Soc. 2006, 128, 5592−5593.
(23) Chen, J.; Zeng, F.; Wu, S.; Chen, Q.; Tong, Z. A core-shell
nanoparticle approach to photoreversible fluorescence modulation of a
hydrophobic dye in aqueous media. Chem. - Eur. J. 2008, 14, 4851−
4860.
(24) Chen, J.; Zeng, F.; Wu, S.; Su, J.; Tong, Z. Photoreversible
Fluorescent Modulation of Nanoparticles via One-Step Miniemulsion
Polymerization. Small 2009, 5, 970−978.
(25) Li, C.; Zhang, Y.; Hu, J.; Cheng, J.; Liu, S. Reversible three-state
switching of multicolor fluorescence emission by multiple stimuli
modulated FRET processes within thermoresponsive polymeric
micelles. Angew. Chem., Int. Ed. 2010, 49, 5120−5124.
(26) Zadran, S.; Standley, S.; Wong, K.; Otiniano, E.; Amighi, A.;
Baudry, M. Fluorescence resonance energy transfer (FRET)-based
biosensors: visualizing cellular dynamics and bioenergetics. Appl.
Microbiol. Biotechnol. 2012, 96, 895−902.
REFERENCES
■
(1) Chen, J.; Zhang, P.; Fang, G.; Yi, P.; Yu, X.; Li, X.; Zeng, F.; Wu, Sh.
Synthesis and characterization of novel reversible photoswitchable
fluorescent polymeric nanoparticles via one-step miniemulsion
polymerization. J. Phys. Chem. B 2011, 115, 3354−3362.
(2) Wang, Y.; Hong, C. H.; Pan, C. P. Spiropyran-based hyperbranched
star copolymer: synthesis, phototropy, FRET, and bioapplication.
Biomacromolecules 2012, 13, 2585−2593.
(3) Sennett, K. A.; Lindner, B. K.; Kaur, N.; Fetner, S. M.; Stitzel, S. E.
Synthesis and photochromic properties of methacryloxy 6-nitro-
spirobenzopyrans. Dyes Pigm. 2013, 98, 437−441.
(4) Beyer, C.; Wagenknecht, H. A. Synthesis of spiropyrans as building
blocks for molecular switches and dyads. J. Org. Chem. 2010, 75, 2752−
2755.
(5) Chen, J.; Zhong, W.; Tang, Y.; Wu, Z.; Li, Y.; Yi, P.; Jiang, j.
Amphiphilic BODIPY-Based Photoswitchable Fluorescent Polymeric
Nanoparticles for Rewritable Patterning and Dual-Color Cell Imaging.
Macromolecules 2015, 48, 3500−3508.
(6) Achilleos, D. S.; Vamvakaki, M. Multiresponsive spiropyran-based
copolymers synthesized by atom transfer radical polymerization.
Macromolecules 2010, 43, 7073−7081.
(7) Son, S.; Shin, E.; Kim, B.-S. Light-responsive micelles of spiropyran
initiated hyperbranched polyglycerol for smart drug delivery. Bio-
macromolecules 2014, 15, 628−634.
(8) Ming, L.; Gu, L. Y.; Zhang, Q.; Xue, M. Z.; Liu, Y. G. Preparation
and study of photoswitchable fluorescence nanoparticles based on
spirobenzopyran. Chin. Chem. Lett. 2013, 24, 1014−1018.
(27) Cheng, P.-C. The contrast formation in optical microscopy in
Handbook of Biological Confocal Microscopy, 3rd ed.; Pawley, J. B., Ed.;
Springer: New York, 2006; pp 162−206.
K
Macromolecules XXXX, XXX, XXX−XXX