Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 J. Thiele, Chem. Ber., 1901, 34, 68.
2 (a) I. Fleming, Frontier Orbitals and Organic Chemical Reactions,
John Wiley & Sons, Chichester, 1976, pp. 136, 167–168; (b) I. Fleming,
Molecular Orbitals and Organic Chemical Reactions, Reference Edition, John
Wiley & Sons, Chichester, 2010, pp. 321–322; (c) G. Deslongchamps and
P. Deslongchamps, Tetrahedron, 2013, 69, 6022; (d) J. Chen and
J. E. Wulff, Org. Biomol. Chem., 2016, 14, 10170; (e) J. Chen, L. Lu and
J. E. Wulff, Synlett, 2017, 28, 2777.
Scheme 4 Known, unknown, and novel extended pinacol rearrangements.
3 A. P. Marchand, I. N. N. Namboothiri, S. B. Lewis, W. H. Watson and
M. Krawiec, Tetrahedron, 1998, 54, 12691.
4 O. K. Onajole, S. Sosibo, P. Govender, T. Govender, P. D. van Helden,
constitute a reaction across a true alkyl bond. Indeed, to the best of
our knowledge, there are no prior examples of extended pinacol
rearrangements occurring across sp3C–sp3C bonds.
´
G. E. M. Maguire, K. Mlinaric-Majerski, I. Wiid and H. G. Kruger,
Chem. Biol. Drug Des., 2011, 78, 1022.
5 A. S. Sklyarova, V. N. Rodionov, C. G. Parsons, G. Quack, P. R. Schreiner
and A. A. Fokin, Med. Chem. Res., 2013, 22, 360–366.
6 J. Chen, B. Kilpatrick, A. G. Oliver and J. E. Wulff, J. Org. Chem.,
2015, 80, 8979.
7 J. Chen, X. Sun, A. G. Oliver and J. E. Wulff, Can. J. Chem., 2017, 95, 234.
8 G. L. Dunn and J. K. Donohue, Tetrahedron Lett., 1968, 9, 3485.
9 A. P. Marchand, I. N. N. Namboothiri, B. Ganguly, W. H. Watson and
S. G. Bodige, Tetrahedron Lett., 1999, 40, 5105.
10 A. P. Marchand, H. K. Hariprakasha and I. N. N. Namboothiri, Synth.
Commun., 2001, 31, 1863.
11 S. G. Bodige, W. H. Watson, A. P. Marchand and V. S. Kumar,
J. Chem. Crystallogr., 1999, 29, 1261.
12 (a) S. Rajkumar, R. S. Choudhari, A. Chowdhury and I. N. N.
Namboothiri, Thermochim. Acta, 2013, 563, 38; (b) S. Lal, L. Mallick,
S. Rajkumar, O. P. Oommen, S. Reshmi, N. Kumbhakarna, A. Chowdhury
and I. N. N. Namboothiri, J. Mater. Chem. A, 2015, 3, 22118.
13 A. P. Marchand, D. Zhao, T.-K. Ngooi and V. Vidyasagar, Tetra-
hedron, 1993, 49, 2613.
14 L. Mallick, S. Lal, S. Reshmi, I. N. N. Namboothiri, A. Chowdhury
and N. Kumbhakarna, New J. Chem., 2017, 41, 920.
15 (a) A. J. H. Klunder, W. C. G. M. de Valk, J. M. J. Verlaak, J. W. M.
Schellekens, J. H. Noordik, V. Parthasarathi and B. Zwanenburg, Tetra-
hedron, 1985, 41, 963; (b) P. M. Ivanov, E. Osawa, A. J. H. Klunder and
B. Zwanenburg, Tetrahedron, 1985, 41, 975.
16 T. Ogino, K. Awano and Y. Fukazawa, J. Chem. Soc., Perkin Trans. 2,
1990, 1735.
17 T. Nigo, T. Hasegawa, Y. Kuwatani and I. Ueda, Bull. Chem. Soc. Jpn.,
1993, 66, 2068.
18 Simple reductions of the cyclobutane bonds in Thiele’s ester and
related 1,3-bishomocubanes are known, using either dissolving
metal reductions (ref. 13) or hydrogenation (ref. 19). However, we
opted not to pursue this strategy here.
19 K. Hirao, T. Iwakuma, M. Taniguchi, O. Yonemitsu, T. Date and
K. Kotera, J. Chem. Soc., Perkin Trans. 1, 1980, 163.
20 C. Audubert and H. Lebel, Org. Lett., 2017, 19, 4407.
21 The broad spectrum n - p transition associated with carbonyl
groups is known to facilitate activation with unfiltered light centred
on 254 nm; see: Y. Liu, X. Lan, S. Gao, Z. Shen, J. Lu and X. Ni, Proc.
SPIE, 2003, 5254, 526.
22 I. N. N. Namboothiri and O. P. Oommen, Indian Pat., Appl. IN
2008MU00098 A 20091002, 2009.
23 Z.-L. Song, C.-A. Fan and Y.-Q. Tu, Chem. Rev., 2011, 111, 7523.
24 (a) R. E. Lutz, R. G. Bass and D. W. Boykin, J. Org. Chem., 1964,
29, 3660; (b) K. Saito, Y. Horie, T. Mukai and T. Toda, Bull. Chem.
Soc. Jpn., 1985, 58, 3118; (c) L.-L. Zhu, X.-X. Li, W. Zhou, X. Li and
Z. Chen, J. Org. Chem., 2011, 76, 8814; (d) H. Wu, Q. Wang and
J. Zhu, Angew. Chem., 2016, 55, 15411.
To gain insight into the scope and limitations of the reaction,
we prepared and tested three additional substrates: 14, 16, and 18
(Scheme 4). As with 11 alcohol 6, the simple 31 alcohol 14 (contain-
ing four methyl groups) failed to produce a product analogous to
4a. Likewise the very electron-poor 18 (containing four CF3 groups
at the para-positions of the aromatic rings) did not react, even at
increased temperatures. However, the more electron-rich substrate
16 (containing four p-methoxy groups) efficiently rearranged to
afford ketone 17. These data would be consistent with carbocation
character in the rate-determining step, but further study will be
required to elucidate the precise mechanistic details.
In summary, the extended pinacol reaction described here
represents a novel ring opening reaction for the Thiele bishomo-
cubane, and constitutes one of the first selective cage openings for
any pentacyclo[5.3.0.02,5.03,9.04,8]decane scaffold derived from the
venerable Thiele acid scaffold. We envision that pairs of tetraary-
lated molecules before and after cage opening (i.e. derivatives of 3
and 4a) will be interesting to evaluate for their biological properties,
and plan to undertake such a study in the future. In addition to
switching the hydrogen-bond donor and acceptor groups on the
compounds’ surface, the rearrangement reaction results in a sub-
stantial change in the shape of the rigid backbone, altering the
projection vectors for the substituents. These changes will pro-
foundly perturb interactions with protein targets.
Of perhaps even greater importance, the synthesis of 4a
represents a significant expansion of known pinacol-type pro-
cesses. While extended pinacol reactions across p systems and
cyclopropanes are described elsewhere, we believe this to be the
first report of such a rearrangement occurring across an alkyl
C–C bond. The apparent regio- and stereo-specificity indicates a
constrained transition state in which an intramolecular hydro-
gen bond may serve to position a distal migrating group to
control the reaction trajectory.
We acknowledge NSERC Canada for operating funds, and
for a fellowship to J. S. We also thank the Canada Research
Chairs Program, the Michael Smith Foundation for Health
Research, and the University of Victoria for ongoing support.
¯
25 R. A. Darby and R. E. Lutz, J. Org. Chem., 1957, 22, 1353.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019