Liu et al.
JOCArticle
64.4, 128.3, 128.4, 128.6, 128.8, 129.0, 132.1, 133.1, 133.6, 136.6,
136.9, 142.3, 194.3, 194.6; MS (ESI) m/z (%) 385.11 (M þ Naþ,
79%), 225.10 (100%).
Ethyl-2-diphenylmethyl-3-oxobutanoate (3s).34. The compound
was prepared from 1e (0.130 g, 1.0 mmol) and 2g (0.368 g, 2.0
mmol). Following typical procedure A, 0.243 g (82% yield) of
product after column chromatography (eluent = petroleum ether/
acetone, 20:1 v/v); following typical procedure B (3 mol % catalyst
was used), 0.252 g (85% yield) of product was obtained after
1,3-Diphenyl-2-[1-(4-fluorophenyl)ethyl]propane-1,3-dione (3n)14.
The compound was prepared from 1c (0.224 g, 1.0 mmol) and 2e
(0.280 g, 2.0 mmol). Following typical procedure A, 0.298 g (86%
yield) of product after column chromatography (eluent = petro-
leum ether/acetone, 20:1 v/v). Mp: 110-112 °C (lit. 110-112 °C);14
1H NMR (400 MHz, CDCl3) δ1.34 (d, J = 7.0 Hz, 3H), 4.06-4.14
(m, 1H), 5.66 (d, J = 10.0 Hz, 1H), 6.81-6.86 (m, 2H), 7.23-7.28
(m, 4H), 7.39-7.43 (m, 3H), 7.51-7.53 (m, 1H), 7.77 (d, 2H), 8.06
(d, 2H); 13C NMR (100 MHz, CDCl3) δ 20.2, 40.4, 64.4, 114.8,
115.1, 128.3, 128.4, 128.6, 128.7, 129.1, 129.2, 133.1, 133.5, 136.6,
136.9, 139.3, 160.0, 162.5, 194.4, 194.6; MS (ESI) m/z (%) 369.13
[M þ Na]þ.
column chromatography. Mp: 88-90 °C (lit. 89-91 °C);34 1
H
NMR (400 MHz, CDCl3) δ 0.99 (t, J = 7.2 Hz, 3H), 2.09 (s, 3H),
3.97 (q, J1 = 14.0 Hz, J2 = 7.2 Hz, 2H), 4.53 (d, J = 12.4 Hz, 1H),
4.76 (d, J = 12.4 Hz, 1H), 7.14-7.15 (m, 2H), 7.16-7.30 (m, 8H);
13C NMR (100 MHz, CDCl3) δ 13.7, 30.0, 50.8, 61.4, 65.1, 126.8,
126.9, 127.7, 127.8, 128.6, 128.8, 141.2, 141.5, 167.6, 201.7; MS
(MALDI,) m/z (%) 319.07 (M þ Naþ, 100).
Ethyl-2-benzhydryl-3-oxo-3-phenylpropanoate (3t)33. The com-
pound was prepared from 1f (0.192 g, 1.0 mmol) and 2g (0.368 g,
2.0 mmol). Following typical procedure A, 0.354 g (99% yield) of
product after column chromatography (eluent = petroleum ether/
acetone, 20:1 v/v); following typical procedure B (2 mL of toluene
was added and 3 mol % catalyst was used), 0.351 g (98% yield) of
product was obtained after column chromatography. Mp:
138-140 °C (lit. 141.9-143.1 °C);33 1H NMR (400 MHz, CDCl3)
δ 0.93 (t, J = 7.2 Hz, 3H), 3.87-3.96 (m, 2H), 5.07(d, J = 11.6 Hz,
1H), 5.41(d, J = 11.6 Hz, 1H), 7.03-7.06 (m, 1H), 7.07-7.45 (m,
7H), 7.53-7.57 (m, 5H), 8.00-8.02 (m, 2H); 13C NMR (100 MHz,
CDCl3) δ 13.6, 50.8, 59.4, 61.6, 126.5, 126.8, 127.7, 128.5, 128.6,
128.7, 133.6, 136.6, 141.7, 167.7, 192.8; MS (MALDI) m/z (%)
381.17 (M þ Naþ, 100).
1,3-Diphenyl-2-(diphenylmethyl)propane-1,3-dione (3o)33. The
compound was prepared from 1c (0.224 g, 1.0 mmol) and 2g
(0.368 g, 2 mmol). Following typical procedure A, 0.300 g (77%
yield) of product after column chromatography (eluent =
petroleum ether/acetone, 20:1 v/v); following typical procedure
B (2 mL of toluene was added), 0.386 g (99% yield) of product
was obtained after column chromatography. Mp: 232-234 °C
(lit. 228.6-230.2 °C);33 1H NMR (400 MHz, CDCl3) δ 5.25 (d,
J = 11.6 Hz, 1H), 6.27 (d, J = 11.6 Hz, 1H), 6.96-7.00 (m, 2H),
7.05-7.16 (m, 4H), 7.24-7.26 (m, 4H), 7.30-7.34 (m, 4H),
7.44-7.46 (m, 2H), 7.82-7.84 (m, 4H); 13C NMR (100 MHz,
CDCl3)
δ 52.4, 62.4, 126.6, 128.3, 128.4, 128.5, 128.6,
133.2, 137.0, 141.7, 194.0; MS (ESI) m/z (%) 413.16 (M þ
Computational Details. Molecular geometries of the model
complexes were optimized without constraints via DFT calcula-
tions using the Becke3LYP (B3LYP)35 functional. Frequency
calculations at the same level of theory have also been performed
to identify all stationary points as minima (zero imaginary
frequencies) to provide free energies at 298.15 K that include
entropic contributions by taking into account the vibrational,
rotational, and translational motions of the species under con-
sideration. The effective core potentials (ECPs) of Hay and
Wadt with double-ζ valence basis sets (LanL2DZ)36 were used
to describe Cl and S. Polarization functions were also added for
Naþ, 100).
1,3-Diphenyl-2-(2-cyclohexen-1-yl)propane-1,3-dione (3p)14. The
compound was prepared from 1c (0.224 g, 1.0 mmol) and 2i
(0.196 g, 2.0 mmol). Following typical procedure A, 0.207 g
(68% yield) of product after column chromatography (eluent =
petroleum ether/acetone, 20:1 v/v). Mp: 96-98 °C (lit. 96-98 °C);14
1H NMR (400 MHz, CDCl3) δ 1.37-1.41 (m, 1H), 1.57-1.59 (m,
1H), 1.70-1.79 (m, 2H), 1.98-2.00 (m, 2H), 3.48-3.50 (m, 1H),
5.32 (d, J = 10.0 Hz, 1H), 5.52 (dd, J1 = 10.2 Hz, J2 = 2.1 Hz, 1H),
5.70-5.73 (m, 1H), 7.39-7.50 (m, 4H), 7.52-7.54 (m, 2H),
7.98-8.01 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 21.0, 25.0,
27.3, 37.1, 62.2, 128.4, 128.6, 128.7, 129.2, 133.3, 133.4, 136.9, 137.1,
194.7, 195.1; MS (ESI) m/z (%) 327.14 (M þ Naþ, 100), 225.10.
1,3-Diphenylpropane-2-(bicyclo[2.2.1]heptan-2-yl)-1,3-dione (3q)22.
The compound was prepared from 1c (0.224 g, 1.0 mmol) and 2j
(0.224 g, 2.0 mmol). Following typical procedure A (2 mL of DCE
was used instead of toluene), 0.312 g (98% yield) of product after
column chromatography (eluent = petroleum ether/acetone, 20:1
v/v). Mp: 119-121 °C; 1H NMR (400 MHz, CDCl3) δ 1.18-1.19
(m, 1H), 1.21-1.22 (m, 2H), 1.27-1.34 (m, 1H), 1.43-1.50 (m,
3H), 1.60-1.64 (m, 1H), 1.94 (s, 1H), 2.24 (s, 1H), 2.69-2.75 (m,
1H), 5.01 (d, J = 11.2 Hz, 1H), 7.37-7.39 (m, 2H), 7.40-7.44 (m,
3H), 7.58-7.59 (m, 1H), 7.92-7.95 (m, 2H), 8.03-8.05 (m, 2H);
13C NMR (100 MHz, CDCl3) δ 28.3, 29.9, 35.8, 36.5, 37.1, 39.4,
43.5, 63.9, 128.5, 128.7, 133.1, 133.3, 136.9, 137.0, 195.0, 195.7; MS
(ESI) m/z (%) 341.16 (M þ Naþ, 32%), 319.18 (MþHþ, 37%),
225.10 (100%).
(34) Yadav, J. S.; Subba, B. V. R.; Pandurangam, T.; Raghavendra,
K. V. R.; Praneeth, K.; Narayana, G. G. K. S. K.; Madavi, C.; Kunwar, A. C.
Tetrahedron Lett. 2008, 49, 4296.
(35) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Miehlich, B.;
Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200. (c) Lee, C.;
Yang, W.; Parr, G. Phys. Rev. B 1988, 37, 785. (d) Stephens, P. J.; Devlin,
F. J.; Chabalowski, C. F. J. Phys. Chem. 1994, 98, 11623.
(36) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
€
(37) (a) Ehlers, A. W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth,
A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G.
€
€
€
Chem. Phys. Lett. 1993, 208, 111. (b) Hollwarth, A.; Bohme, M.; Dapprich,
S.; Ehlers, A. W.; Obbi, A. G.; Jonas, V.; Kohler, K. F.; Stegmann, R.;
€
€
Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 237.
(38) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys.
1980, 72, 650.
(39) (a) Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163. (b) Hariharan,
P. C.; Pople, J. A. Theor. Chim. Acta. 1973, 28, 213. (c) Binning, R. C., Jr.;
Curtiss, L. A. J. Comput. Chem. 1990, 11, 1206.
(40) (a) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
(b) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.
(41) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci,
B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada,
M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian,
H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;
Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,
J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg,
J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;
Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.;
Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill,
P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford, CT, 2004.
2-Acetyl-2-benzhydrylcyclopentanone (3r). The compound was
prepared from 1d (0.126 g, 1.0 mmol) and 2g (0.368 g, 2.0 mmol).
Following typical procedure A (3 mol % catalyst was used), 0.280 g
(96% yield) of product after column chromatography (eluent =
petroleum ether/acetone, 20:1 v/v); following typical procedure B
(2 mL of toluene was added and 3 mol % catalyst was used), 0.178 g
(61% yield) of product was obtained after column chromatogra-
phy. Mp: 156-158 °C; 1H NMR (400 MHz, CDCl3) δ 1.31-1.40
(m, 1H), 1.63-1.76 (m, 2H), 2.05-2.22 (m, 5H), 3.12-3.17 (m,
1H), 5.34 (s, 1H), 7.00-7.02 (m, 2H), 7.16-7.30 (m, 8H); 13C
NMR (100 MHz, CDCl3) δ 19.6, 25.9, 27.4, 38.9, 55.1, 74.3, 126.9,
128.3, 128.8, 128.9, 129.8, 140.4, 202.6, 215.2; HRMS (þESI) calcd
for C20H20O2þ: 292.1458, found 292.1460 [M]þ.
J. Org. Chem. Vol. 75, No. 15, 2010 5029