electron-rich olefins proceeds efficiently in alcohol solvents,
especially ethylene glycol (EG), furnishing branched olefins
in excellent selectivity.7a,b In continuing the research, we
thought that if readily available 2-halobenzaldehydes were
used to arylate the cheap n-butyl vinyl ether, the resulting
branched vinyl ether products might undergo intramolecular
nucleophilic attack at the carbonyl group,8 yielding 1-in-
danones in a one-pot fashion (Scheme 1). To realize this
through hydrogen bonding with the halide anions and the
carbonyl oxygen.9,10 We report herein that 1-indanones can
indeed be readily accessed via this cascade reaction.
Using 2-bromobenzaldehyde (1a) and n-butyl vinyl ether
(2a) as substrates and reaction conditions similar to those
established for other aryl bromides,7b we quickly found that
under the catalysis of Pd-dppp in EG, the indanone (3a) could
be isolated in an excellent yield of 85% following acid
hydrolysis (entry 1, Table 1). To our surprise, however, the
Scheme 1. Working Hypothesis for Accessing 1-Indanones
Table 1. Screening Reaction Conditions for the Cascade
Reactiona
entry
Pd(OAc)2 (mol %)
solvent
yield (%)b
1
2
1
1
2
2
2
EG
EG
DMF
DMF
DMSO
85
86c
<5
42
<5
seemingly easy, Heck-aldol-type cascade, the use of EG as
solvent could be the key, as it would be expected to facilitate
both the Heck arylation7a,b and the nucleophilic attack
3
4d
5
a Reaction conditions: (1) 1a (1 mmol), 2a (3 mmol), Pd(OAc)2 (1 mol
%), dppp (1.5 mol %), Et3N (1.5 mmol), solvent (4 mL), 115 °C, 16 h; (2)
3 M HCl, rt, 1 h. b Isolated yields of 3a. c No acid hydrolysis; isolated
(1) (a) Mahalingam, A. K.; Axelsson, L.; Ekegren, J. K.; Wannberg, J.;
Kihlstro¨m, J.; Unge, T.; Wallberg, H.; Samuelsson, B.; Larhed, M.; Hallberg,
A. J. Med. Chem. 2010, 53, 607. (b) Wessig, P.; Teubner, J. Synlett 2006,
1543, and references therein. (c) Ito, T.; Tanaka, T.; Iinuma, M.; Nakaya,
K.; Takahashi, Y.; Sawa, R.; Murata, J.; Darnaedi, D. J. Nat. Prod. 2004,
67, 932. (d) Yao, W.; Wasserman, Z. R.; Chao, M.; Reddy, G.; Shi, E.;
Liu, R.-Q.; Covington, M. B.; Arner, E. C.; Pratta, M. A.; Tortorella, M.;
Magolda, R. L.; Newton, R.; Qian, M.; Ribadeneira, M. D.; Christ, D.;
Wexler, R. R.; Decicco, C. P. J. Med. Chem. 2001, 44, 3347. (e) Nagle,
D. G.; Zhou, Y.-D.; Park, P. U.; Paul, V. J.; Rajbhandari, I.; Duncan,
C. J. G.; Pasco, D. S. J. Nat. Prod. 2000, 63, 1431. (f) Hong, B. C.; Sarshar,
S. Org. Prep. Proced. Int. 1999, 31, 1. (g) Lago, M. A.; Luengo, J. I.;
Peishoff, C. E.; Elliot, J. D. In Annuual Reports in Medicinal Chemistry;
Bristol, J. A., Ed.; Academic Press: San Diego, 1996; Vol. 31, p 81. (h)
Sugimoto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K. J. Med. Chem. 1995,
38, 4821. (i) Dorsey, B. D.; Levin, R. B.; McDaniel, S. L.; Vacca, J. P.;
Guare, J. P.; Darke, P. L.; Zugay, J. A.; Emini, E. A.; Schleif, W. A.;
Quintero, J. C.; Lin, J. H.; Chen, I.-W.; Holloway, M. K.; Fitzgerald,
P. M. D.; Axel, M. G.; Ostovic, D.; Anderson, P. S.; Huff, J. R. J. Med.
Chem. 1994, 37, 3443. (j) Bøgesø, K. P.; Christensen, A. V.; Hyttel, J.;
Liljefors, T. J. Med. Chem. 1985, 28, 1817. (k) deSolms, S. J.; Woltersdorf,
O. W., Jr.; Cragoe, E. J., Jr. J. Med. Chem. 1978, 21, 437.
d
yields of 3aa. 1.5 mmol [H2NiPr2][BF4] was added.
indanone ketal (3aa) was isolated in 86% yield when the
acid treatment was omitted (entry 2), indicative of 3a being
formed from 3aa. Apart from the mechanistic implication,
this provides a simple method for synthesizing ketal-
protected indanones, which were obtained in moderate yields
via Hallberg and Larhed’s method.6a For comparison, the
reaction was also performed in DMF and DMSO. As can
be seen from Table 1, little desired product was formed
(entries 3 and 5), most likely due to the Heck arylation being
sluggish.7a,b Introducing the hydrogen bond donor
[H2NiPr2][BF4], which has been shown to promote the Heck
reaction,7d led to an increased but still unsatisfactory yield
of 42% for 3a (entry 4), indicating that EG is highly effective
in catalyzing both the Heck and annulation reactions.
Under the reaction conditions established above (entry 1,
Table 1), we then explored the reactions of 2a with a range
of 2-bromobenzaldehydes (1a-h). As summarized in Table
2, the reaction afforded good to excellent yields of 3-hy-
droxy-1-indanones (3a-h), tolerating electronically different
substituents on the aromatic ring. However, when salicyla-
ldehyde triflate was used,6 3a was obtained only in 12%
yield, due to decomposition of the triflate in EG.
(2) For recent examples, see: (a) Cui, D.-M.; Zhang, C.; Kawamura,
M.; Shimada, S. Tetrahedron Lett. 2004, 45, 1741. (b) Fillion, E.; Fishlock,
D.; Wilsily, A.; Goll, J. M. J. Org. Chem. 2005, 70, 1316, and references
therein.
(3) Kundu, K.; McCullagh, J. V.; Morehead, A. T. J. Am. Chem. Soc.
2005, 127, 16042.
(4) (a) Shintani, R.; Yashio, K.; Nakamura, T.; Okamoto, K.; Shimada,
T.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 2772. (b) Shintani, R.; Takatsu,
K.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 3735.
(5) (a) Gagnier, S. V.; Larock, R. C. J. Am. Chem. Soc. 2003, 125, 4804.
(b) Matsuda, T.; Shigeno, M.; Makino, M.; Murakami, M. Org. Lett. 2006,
8, 3379. (c) Minatti, A.; Zheng, X.; Buchwald, S. L. J. Org. Chem. 2007,
72, 9253. (d) Petrignet, J.; Roisnel, T.; Gre´e, R. Chem.sEur. J. 2007, 13,
7374. (e) Saito, A.; Umakoshi, M.; Yagyu, N.; Hanzawa, Y. Org. Lett.
2008, 10, 1783.
(6) (a) Bengtson, A.; Larhed, M.; Hallberg, A. J. Org. Chem. 2002, 67,
5854. (b) Arefalk, A.; Larhed, M.; Hallberg, A. J. Org. Chem. 2005, 70,
938.
With the success in aryl bromides, we turned our attention
to the chloride analogues. However, under the same condi-
(7) (a) Ruan, J.; Iggo, J. A.; Berry, N. G.; Xiao, J. J. Am. Chem. Soc.
2010, 132, 16689. (b) Zeynab, H.; Ruan, J.; Xiao, J. Chem.sEur. J. 2008,
14, 5555. (c) Ruan, J.; Saidi, O.; Iggo, J. A.; Xiao, J. J. Am. Chem. Soc.
2008, 130, 10510. (d) Mo, J.; Xiao, J. Angew. Chem., Int. Ed. 2006, 45,
4152. (e) Mo, J.; Xu, L.; Xiao, J. J. Am. Chem. Soc. 2005, 127, 751.
(8) For intermolecular aldol-type reactions of vinyl ethers, see: Carreira,
E. M.; Lee, W.; Singer, R. A. J. Am. Chem. Soc. 1995, 117, 3649.
(9) Ethylene glycol is an excellent hydrogen bond donor: Reichardt, C.
SolVents and SolVent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH:
Weinheim, 2003.
(10) The carbonyl may be activated through a single-point hydrogen
bonding; see ref 7a. Also see: Unni, A. K.; Takenaka, N.; Yamamoto, H.;
Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 1336.
Org. Lett., Vol. 13, No. 2, 2011
269