Structure and Kinetic Characterization of HMG/CHA Aldolase
residue replacements result in the binding sites being quite dif- 11. Leulliot, N., Quevillon-Cheruel, S., Graille, M., Schiltz, M., Blondeau, K.,
Janin, J., and Van Tilbeurgh, H. (2005) Protein Sci. 14, 2751–2758
ferent, suggesting the recognition of quite different substrates.
1
2. Clap e´ s, P., Fessner, W. D., Sprenger, G. A., and Samland, A. K. (2010) Curr.
Opin. Chem. Biol. 14, 154–167
Nevertheless, the strong conservation of the magnesium and
pyruvate-binding sites in these two proteins argues that they
too are highly likely to be aldolases.
1
3. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A
Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor,
New York
The similarity between HMG/CHA aldolase and RraA is less
strong. RraA from E. coli is proposed to bind the C-terminal 14. Tabor, S., and Richardson, C. C. (1985) Proc. Natl. Acad. Sci. U.S.A. 82,
1
074–1078
domain of RNase E, blocking binding of accessory proteins
motifs (supplemental Fig. S5), including the ␣F helix that con-
tributes the metal ligand Glu-199Ј. The equivalent of Arg-123 is
conserved across all RraA homologs, whereas Asp-102 and
1
1
1
5. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254
6. Otwinowski, Z., and Minor, W. (1997) Methods Enzymol. 276, 307–326
7. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Sto-
roni, L. C., and Read, R. J. (2007) J. Appl. Crystallogr. 40, 658–674
8. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Acta Crys-
tallogr. D Biol. Crystallogr. 66, 486–501
1
Asp-124 are also largely conserved, although one or both are 19. Collaborative Computational Project (1994) Acta Crystallogr. D Biol.
Crystallogr. 50, 760–763
missing in some homologs, including E. coli and T. thermophi-
2
0. Winn, M. D., Isupov, M. N., and Murshudov, G. N. (2001) Acta Crystal-
logr. D Biol. Crystallogr. 57, 122–133
lus. Interestingly, the proposed substrate-binding residues
Asn-71 and Lys-147 are conserved, despite RraA being rela-
tively distantly related to HMG/CHA aldolase. The pyruvate-
2
1. Delano, W. L. (2002) The PyMOL Molecular Graphics System, DeLano
Scientific, San Carlos, CA
binding site is occupied by small anions in several of these 22. Helaine, V., Rossi, J., Gefflaut, T., Alaux, S., and Bolte, J. (2001) Adv. Synth.
structures, including tartaric acid (Protein Data Bank code
Catalysis 343, 692–697
2
2
3. Wang, W., Baker, P., and Seah, S. Y. (2010) Biochemistry 49, 3774–3782
4. Chell, R. M., Sundaram, T. K., and Wilkinson, A. E. (1978) Biochem. J. 173,
1
NXJ) and acetate (Protein Data Bank code 2PCN). RraA is
present in organisms such as T. thermophilus (28) where RNase
E is absent, suggesting that the inhibitory function of RraA may
have been secondarily acquired, and some homologs may have
a catalytic function in addition to, or instead of, the RNase E
1
65–177
2
5. Cornish-Bowden, A. (1995) Analysis of Enzyme Kinetic Data, Oxford Uni-
versity Press, New York
2
6. Krissinel, E., and Henrick, K. (2007) J. Mol. Biol. 372, 774–797
inhibitory function. The similarities with the active site of 27. Johnston, J. M., Arcus, V. L., Morton, C. J., Parker, M. W., and Baker, E. N.
(
2003) J. Bacteriol. 185, 4057–4065
HMG/CHA aldolase suggests that the RraA family is derived
from a common ancestor with class II aldolase activity, and at
least some homologs seem likely to have retained this activity.
In addition, HMG/CHA aldolase is also distantly related to the
His domain of Enzyme I and phosphohistidine domain of PPDK
in terms of the three-dimensional structure. Intriguingly, the
histidine residues responsible for phosphate transfer (His-189
for enzyme I and His-455 for PPDK) were replaced by arginine
2
2
3
8. Rehse, P. H., Kuroishi, C., and Tahirov, T. H. (2004) Acta Crystallogr. D
Biol. Crystallogr. 60, 1997–2002
9. Liao, D. I., Silverton, E., Seok, Y. J., Lee, B. R., Peterkofsky, A., and Davies,
D. R. (1996) Structure 4, 861–872
0. Teplyakov, A., Lim, K., Zhu, P. P., Kapadia, G., Chen, C. C., Schwartz, J.,
Howard, A., Reddy, P. T., Peterkofsky, A., and Herzberg, O. (2006) Proc.
Natl. Acad. Sci. U.S.A. 103, 16218–16223
3
3
1. Herzberg, O., Chen, C. C., Kapadia, G., McGuire, M., Carroll, L. J., Noh,
S. J., and Dunaway-Mariano, D. (1996) Proc. Natl. Acad. Sci. U.S.A. 93,
(
Arg-123) in HMG/CHA aldolase, which is essential for catal-
2
652–2657
ysis. Future work on these proteins may provide deeper insights
into how these divergent functions evolved from a common
ancestor.
2. Manjasetty, B. A., Powlowski, J., and Vrielink, A. (2003) Proc. Natl. Acad.
Sci. U.S.A. 100, 6992–6997
33. Rea, D., F u¨ l o¨ p, V., Bugg, T. D., and Roper, D. I. (2007) J. Mol. Biol. 373,
8
66–876
Acknowledgment—We thank Pawel Grochulski for collecting the 34. Blom, N. S., T e´ treault, S., Coulombe, R., and Sygusch, J. (1996) Nat. Struct.
HMG/CHA aldolase dataset at the Canadian Macromolecular Crys-
tallography Facility.
Biol. 3, 856–862
3
5. Hampele, I. C., D’Arcy, A., Dale, G. E., Kostrewa, D., Nielsen, J., Oefner, C.,
Page, M. G., Sch o¨ nfeld, H. J., St u¨ ber, D., and Then, R. L. (1997) J. Mol. Biol.
2
68, 21–30
REFERENCES
36. Radaev, S., Dastidar, P., Patel, M., Woodard, R. W., and Gatti, D. L. (2000)
J. Biol. Chem. 275, 9476–9484
1
2
3
. Masai, E., Katayama, Y., and Fukuda, M. (2007) Biosci. Biotechnol. Bio-
3
3
7. Dreyer, M. K., and Schulz, G. E. (1993) J. Mol. Biol. 231, 549–553
chem. 71, 1–15
8. Kroemer, M., Merkel, I., and Schulz, G. E. (2003) Biochemistry 42,
. Seo, J. S., Keum, Y. S., and Li, Q. X. (2009) Int. J. Environ. Res. Public Health
1
0560–10568
6, 278–309
3
9. Horecker, B. L., Tsolas, O., and Lai, C. Y. (1972) in The Enzymes (Boyer,
. Keyser, P., Pujar, B. G., Eaton, R. W., and Ribbons, D. W. (1976) Environ.
Health Perspect. 18, 159–166
P. D., ed) 3rd Ed., Vol. 7, pp. 213–258, Academic Press, New York
4
5
. Dennis, D. A., Chapman, P. J., and Dagley, S. (1973) J. Bacteriol. 113, 521–523 40. Baker, P., Pan, D., Carere, J., Rossi, A., Wang, W., and Seah, S. Y. (2009)
. Tack, B. F., Chapman, P. J., and Dagley, S. (1972) J. Biol. Chem. 247,
444–6449
. Maruyama, K. (1990) J. Biochem. 108, 327–333
Biochemistry 48, 6551–6558
6
41. Narayanan, B. C., Niu, W., Han, Y., Zou, J., Mariano, P. S., Dunaway-
Mariano, D., and Herzberg, O. (2008) Biochemistry 47, 167–182
6
7
. Maruyama, K., Miwa, M., Tsujii, N., Nagai, T., Tomita, N., Harada, T., Soba- 42. Chaudhuri, B. N., Sawaya, M. R., Kim, C. Y., Waldo, G. S., Park, M. S.,
jima, H., and Sugisaki, H. (2001) Biosci. Biotechnol. Biochem. 65, 2701–2709
. Wang, W., and Seah, S. Y. (2005) Biochemistry 44, 9447–9455
Terwilliger, T. C., and Yeates, T. O. (2003) Structure 11, 753–764
43. G o´ rna, M. W., Pietras, Z., Tsai, Y. C., Callaghan, A. J., Hern a´ ndez, H.,
Robinson, C. V., and Luisi, B. F. (2010) RNA 16, 553–562
8
9
. Powlowski, J., Sahlman, L., and Shingler, V. (1993) J. Bacteriol. 175, 377–385
1
0. Monzingo, A. F., Gao, J., Qiu, J., Georgiou, G., and Robertus, J. D. (2003) J. 44. Lee, K., Zhan, X., Gao, J., Qiu, J., Feng, Y., Meganathan, R., Cohen, S. N.,
Mol. Biol. 332, 1015–1024
and Georgiou, G. (2003) Cell 114, 623–634
NOVEMBER 19, 2010•VOLUME 285•NUMBER 47
JOURNAL OF BIOLOGICAL CHEMISTRY 36615