G Model
CCLET 3841 1–5
4
N. Yan et al. / Chinese Chemical Letters xxx (2016) xxx–xxx
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
and H5), 3.90 (dt, 1H, J = 3.2, 9.8, Hz, H4), 3.82 (t, 1H, J = 10.3 Hz, H6),
3.46 (s, 3H, OMe), 2.77 (dd, 1H, J = 1.5, 5.5 Hz, OH); 13C NMR
(100 MHz, CDCl3): d 137.1 (CAr), 129.3 (CAr), 128.3 (CAr), 126.2 (CAr),
X-ray crystal structure data of 4. Dr. Thanh Le is also acknowledged
for the proof reading.
243
244
102.3 (C7), 98.9 (d, J = 33.1 Hz, C1), 87.7 (d, J = 173.9 Hz, C2), 76.1 (d,
J = 1.7 Hz, C4), 69.1 (C6), 66.5 (d, J = 27.9 Hz, C3), 58.1 (C5), 56.0
References
245
(OCH3); 19F {1H} NMR (376 MHz, CDCl3):
d
-194.0 (s, 1F); 19F NMR
[1] (a) D. O’Hagan, Understanding organofluorine chemistry. An introduction to the
C-F bond, Chem. Soc. Rev. 37 (2008) 308–319;
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
(376 MHz, CDCl3):
d
-194.0 (m, 1F); HRMS (ESI): calcd. For
C14H17FNaO5 [M + Na]+ 307.0952, found 307.0956.
Methyl-4,6-O-benzylidene-3-deoxy-3-fluoro- -D-glucopyra-
+
(b) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Fluorine in medicinal
chemistry, Chem. Soc. Rev. 37 (2008) 320–330;
a
(c) E.P. Gillis, K.J. Eastman, M.D. Hill, D.J. Donnelly, N.A. Meanwell, Applications of
fluorine in medicinal chemistry, J. Med. Chem. 58 (2015) 8315–8359.
[2] (a) H.A. Chokhawala, H.Z. Cao, H. Yu, X. Chen, Enzymatic synthesis of fluorinated
mechanistic probes for sialidases and sialyltransferases, J. Am. Chem. Soc. 129
(2007) 10630–10631;
noside (14): White soild (61.7 mg, 26%) and (335 mg, 28%);
Reaction temperatue:130 8C; Column chromatography (silica gel,
petroleum ether/EtOAc: 5:1); Mp: 164–166 8C; [
1.0, CHCl3); IR (cmÀ1): 3452, 1450, 1385, 1052; 1H NMR (400 MHz,
CDCl3): 7.51–7.49 (m, 2H), 7.39–7.35 (m, 3H), 5.55 (s, 1H, H7),
a] +172.68 (c
D
(b) C.D. Brown, M.S. Rusek, L.L. Kiessling, Fluorosugar chain termination agents as
probes of the sequence specificity of a carbohydrate polymerase, J. Am. Chem. Soc.
134 (2012) 6552–6555.
d
4.83 (dd, 1H, J = 2.7, 4.1 Hz, H1), 4.69 (ddd, 1H, J = 8.7, 8.7, 54.7 Hz,
H3a), 4.34–4.30 (m, 1H, H6), 3.88–3.68 (m, 4H, H5, H6, H4 and H2),
3.45 (s, 3H), 2.43 (d, J = 9.7 Hz, 1H, OH); 13C NMR (100 MHz,
[3] (a) J.H. Kim, R. Resende, T. Wennekes, et al., Mechanism-based covalent neur-
aminidase inhibitors with broad-spectrum influenza antiviral activity, Science
340 (2013) 71–75;
CDCl3):
d 136.8 (CAr), 129.3 (CAr), 128.3 (CAr), 126.2 (CAr), 101.7
(b) K.E. van Straaten, J.R.A. Kuttiyatveeti, C.M. Sevrain, et al., Structural basis of
ligand Binding to UDP-galactopyranose mutase from mycobacterium tuberculo-
sis using substrate and tetrafluorinated Substrate Analogues, J. Am. Chem. Soc.
137 (2015) 1230–1244.
(C7), 101.1 (d, J = 9.9 Hz,C1), 91.8 (d, J = 186.6 Hz, C3), 79.2 (d,
J = 17.1 Hz, C4), 71.5 (d, J = 17.9 Hz, C2), 68.8 (C6), 61.9 (d,
J = 7.5 Hz, C5), 55.7(OCH3); 19F {1H} NMR (376 MHz, CDCl3):
d -
[4] P.Y. Wang, B.K. Chun, S. Rachakonda, et al., An efficient and diastereoselective
synthesis of psi-6130: a clinically efficacious inhibitor of HCV NS5B polymerase, J.
Org. Chem. 74 (2009) 6819–6824.
[5] G.R. Morais, R.A. Falconer, I. Santos, Carbohydrate-based molecules for molecular
imaging in nuclear medicine, Eur. J. Org. Chem. (2013) 1401–1414.
[6] P. Som, H.L. Atkins, D. Bandoypadhyay, et al., A fluorinated glucose analog, 2-
fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection, J.
Nuc.l Med. 21 (1980) 670–675.
[7] (a) Y. Cheng, A.L. Guo, D.S. Guo, Recent progress in synthesis and applications of
fluorinated carbohydrates, Curr. Org. Chem. 14 (2010) 977–999;
(b) K. Dax, M. Albert, J. Ortner, B.J. Paul, Synthesis of deoxyfluoro sugars from
carbohydrate precursors, Carbohydr. Res. 327 (2000) 47–86.
[8] (a) P.A. Champagne, J. Desroches, J.D. Hamel, M. Vandamme, J.F. Paquin, Mono-
fluorination of organic compounds: 10 years of innovation, Chem. Rev. 115 (2015)
9073–9174;
200.0 (s, 1F); 19F NMR (376 MHz, CDCl3):
d -200.0 (m, 1F); HRMS
(ESI): calcd. For C14H17FNaO5 [M + Na]+ 307.0952, found
+
307.0960.
p-Tolyl-2-deoxy-2-fluoro-4,6-O-benzylidene-1-thio-b-D-altro-
pyranoside 16: White solid (109.1 mg, 0.290 mmol, 83%); Reaction
temperatue: 70 8C. Column chromatography (silica gel, petroleum
ether/EtOAc: 10:1); Mp: 164–165 8C; [
IR (cmÀ1): 3419, 2913, 1493, 1456, 1387, 1115; 1H NMR (400 MHz,
CDCl3): 7.48–7.37 (m, 6H), 7.15 (d, J = 7.9 Hz, 2H), 5.64 (s, 1H),
a
]D = À23.2 (c 1.0, CHCl3);
d
5.18 (bd, J = 32.3 Hz, 1H, H1), 4.87 (dd, 1H, J = 3.6, 44.5 Hz, H2),
4.39–4.34 (m, 2H, H6 and H3), 4.02–3.92 (m, 2H, H4 and H5), 3.89–
(b) X.Y. Yang, T. Wu, R.J. Phipps, F.D. Toste, Advances in catalytic enantioselective
fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation
reactions, Chem. Rev. 115 (2015) 826–870;
3.84 (m, 1H, H6), 2.42 (d, 1H, J = 1.5 Hz, OH), 2.35 (s, 3H, CH3); 13
C
NMR (100 MHz, CDCl3):
d 138.1(CAr), 136.9 (CAr), 132.1(CAr), 129.9
(c) N. Al-Maharik, D. O’Hagan, Organofluorine chemistry: deoxyfluorination
reagents for C-F bond synthesis, Aldrichim Acta 44 (2011) 65–75.
[9] J.P. Card, Synthesis of fluorinated carbohydrates, J. Carbohydr. Chem. 4 (1985)
451–487.
[10] (a) K. Dax, M. Albert, J. Ortner, B.J. Paul, Synthesis of deoxyfluoro sugars from
carbohydrate precursors, Carbohydr. Res. 327 (2000) 47–86;
(CAr), 129.4 (CAr), 128.4 (CAr), 126.1(CAr), 102.2 (C7), 90.9 (d,
J = 176.5 Hz, C2), 84.2 (d, J = 18.4 Hz, C1), 76.2 (C4), 68.9 (C6), 67.2
(d, J = 29.5 Hz, C3), 66.4 (C5), 21.1(CH3); 19F {1H} NMR (376 MHz,
CDCl3):
d d -201.3 (m,
-201.3 (s, 1F); 19F NMR (376 MHz, CDCl3):
1F); HRMS (ESI): calcd. For C20H21FNaO4S+ [M + Na]+ 399.1037,
found 399.1042
(b) X.G. Hu, L. Hunter, Stereoselectively fluorinated N-heterocycles:
survey, Beilstein J. Org. Chem. 9 (2013) 2696–2708.
a brief
[11] (a) Y. Nishida, J. Thiem, Convenient synthetic approach towards C-3 modified
methyl beta-lactone, Carbohydr. Res. 263 (1994) 295–301;
Iso-propyl-4,6-O-benzylidene-3-deoxy-3-fluoro-1-thio-b-D-
Idopyranose 19: White soild (30.2 mg, 0.092 mmol, 75%); Reaction
temperatue: 80 8C; Column chromatography(silica gel, petroleum
(b) J.M. Chen, A.X. Huang, R.L. Mackman, et al., Nucleoside analogs for antiviral
treatment, PCT Int. Appl., 2008100447
(c) JA. Wright, N.F. Taylor, Flourocarbohydrates: Part XVIII. 9-(3-deoxy-3-flouro-
b-D-xylofuranosyl)adenine and 9-(3-deoxy-3-flouro-a-D-arabinofuranosyl)ade-
nine, Carbohydr. Res. 6 (1968) 347–354.
ether/EtOAc: 5:1); Mp: 172–174 8C; [
(cmÀ1): 3372, 2920, 1493, 1464, 1380; 1H NMR (400 MHz, CDCl3):
7.48–7.36 (m, 5H, HAr), 5.54 (s, 1H, H7), 4.97 (d, 1H, J = 4.0 Hz, H1),
a
]
D
-33.8 (c 1.0, CHCl3); IR
d
[12] (a) M. Bols, I. Lundt, Preparation of 2,3-epoxyaldonolactones and their conver-
sion into 2-fluoro-2-deoxy-aldonolactones and 2-fluoro-2-deoxy-sugars, Acta
Chem. Scand. 44 (1990) 252–256.
[13] (a) Y. Akiyama, T. Fukuhara, S. Hara, Regioselective synthesis of fluorohydrines
via SN2-type ring-opening of epoxides with TBABF-KHF2, Synlett (2003)
1530–1532;
4.83 (dt, 1H, J = 3.3, 43.6 Hz, H3), 4.40 (dd, 1H, J = 1.6, 12.7 Hz, H6),
4.21–4.18 (m, 1H, H2), 4.10 (dd, 1H, J = 1.8, 12.7 Hz, H6), 3.87 (ddd,
1H, J = 3.1, 6.5, 10.7 Hz, H4), 3.72 (t, 1H, J = 1.9 Hz, H5), 3.24
(quintet, 1H, J = 6.7 Hz, CH-), 3.17 (dd, 1H, J = 1.9, 12.5 Hz, OH),
1.37–1.34 (m, 6H); 13C NMR (100 MHz, CDCl3):
d 136.9 (CAr), 129.4
(b) Y. Akiyama, C. Hiramatsu, T. Fukuhara, S. Hara, Selective introduction of a
fluorine atom into carbohydrates and a nucleoside by ring-opening fluorination
reaction of epoxides, J Fluorine. Chem. 127 (2006) 920–923;
(c) M. Mastihubova, P. Biely, Deoxy and deoxyfluoro analogues of acetylated
methyl (-D-xylopyranoside—substrates for acetylxylan esterases, Carbohydr. Res.
339 (2004) 2101–2110.
(CAr), 128.4 (CAr), 126.0 (CAr), 101.6 (C7), 86.4 (d, J = 175.2 Hz, C3),
81.8 (d, J = 1.4 Hz, C1), 72.1 (d, J = 30.5 Hz, C2), 69.6 (C6), 68.4 (d,
J = 26.0 Hz, C4), 68.2 (C5), 35.1(CH-), 23.8 (CH3-), 23.7(CH3-); 19F
NMR (376 MHz, CDCl3):
d
-197.1 (m, 1F); 19F {1H} NMR (376 MHz,
[14] (a) N. Yan, Z. Fang, Q.Q. Liu, X.H. Guo, X.G. Hu, Conformation-induced regiose-
lective and divergent opening of epoxides by fluoride: facile access to hydroxyl-
ated fluoro-piperidines, Org. Biomol. Chem. 14 (2016) 3469–3475;
(b) X.G. Hu, A. Lawer, M.B. Peterson, et al., Diastereoselective synthesis and
conformational analysis of (2R)- and (2S)-fluorostatines: an approach based on
CDCl3):
d
-197.1 (s, 1F); HRMS (ESI): calcd. for
C16H21FNaO4S+[M + Na]+ 351.1037, found 351.1044.
238
Acknowledgment
organocatalytic fluorination of
662–665;
a chiral aldehyde, Org. Lett. 18 (2016)
(c) X.G. Hu, D.S. Thomas, R. Griffith, L. Hunter, Stereoselective fluorination alters
the geometry of a cyclic peptide: exploration of backbone-fluorinated analogues
of unguisin A, Angew. Chem. Int. Edit. 53 (2014) 6176–6179.
239
240
241
242
We thank the National Natural Science Foundation of China (No.
21502076) for the financial support. Dr. Mohan M. Bhadbhade and
Dr. Thanh Le from the University of New South Wales (UNSW)
are acknowledged for their help in solving problems related to the
[15] J.M. Percy, R. Roig, K. Singh, Fluorinated analogues of amicetose and rhodinose -
novel racemic and asymmetric routes, Eur. J. Org. Chem. (2009) 1058–1071.
Please cite this article in press as: N. Yan, et al., Ring opening of sugar-derived epoxides by TBAF/KHF2: An attractive alternative for the