5
490
W. Nam et al. / Tetrahedron Letters 43 (2002) 5487–5490
References
1. (a) Merkx, M.; Kopp, D. A.; Sazinsky, M. H.; Blazyk, J.
L.; Muller, J.; Lippard, S. J. Angew. Chem., Int. Ed. 2001,
40, 2782; (b) Newcomb, M.; Toy, P. H. Acc. Chem. Res.
2000, 33, 449; (c) Shilov, A. E.; Shteinman, A. A. Acc.
Chem. Res. 1999, 32, 763.
2. (a) Costas, M.; Chen, K.; Que, L., Jr. Coord. Chem. Rev.
2000, 200–202, 517; (b) Hu, Z.; Gorun, S. M. In
Biomimetic Oxidations Catalyzed by Transition Metal
Complexes; Meunier, B., Ed.; Imperial College Press:
London, 2000; pp. 269–307; (c) McLain, J. L.; Lee, J.;
Groves, J. T. In Biomimetic Oxidations Catalyzed by
Transition Metal Complexes; Meunier, B., Ed.; Imperial
College Press: London, 2000; pp. 91–169.
3
. (a) Chen, K.; Que, L., Jr. J. Am. Chem. Soc. 2001, 123,
Figure 2. Yields (%, based on the amount of m-CPBA added)
of cis-1,2-dimethylcyclohexanol obtained in the reactions of
Co(ClO ) (ꢀ) and Co(TPFPP)(ClO ) (ꢁ) as a function of
reaction time. Reaction conditions were the same as described
in Table 1, footnote a except that m-CPBA (20 equiv.) was
added all at once to the reaction solution. Aliquots of the
reaction solutions were sampled at the given time and ana-
lyzed by GC.
6327; (b) Bartoli, J.-F.; Le Barch, K.; Palacio, M.; Bat-
tioni, P.; Mansuy, D. Chem. Commun. 2001, 1718; (c)
Nam, W.; Goh, Y. M.; Lee, Y. J.; Lim, M. H.; Kim, C.
Inorg. Chem. 1999, 38, 3238; (d) Lim, M. H.; Lee, Y. J.;
Goh, Y. M.; Nam, W.; Kim, C. Bull. Chem. Soc. Jpn.
4
2
4
1999, 72, 707; (e) Yamaguchi, M.; Kousaka, H.;
Yamagishi, T. Chem. Lett. 1997, 769; (f) Kojima, T.
Chem. Lett. 1996, 121.
4
5
. (a) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97,
2879; (b) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed
Oxidations of Organic Compounds; Academic Press: New
York, 1981.
. (a) Komiya, N.; Noji, S.; Murahashi, S.-I. Chem. Com-
mun. 2001, 65; (b) Moody, C.; O’Connell, J. L. Chem.
Commun. 2000, 1311; (c) Nomura, K.; Uemura, S. J.
Chem. Soc., Chem. Commun. 1994, 129.
1
3
results of Co(ClO ) and Co(TPFPP)(ClO )]. More-
4
2
4
over, the formation of oxygenated products was found
to be much slower in the hydroxylation of cis-1,2-
dimethylcyclohexane by Co(TPFPP)(ClO ) than by
Co(ClO4)2 (Fig. 2). With the previous results that
4
cobalt porphyrins containing electron-rich porphyrin
+
ligand such as [Co(TMP)]
[TMP=meso-tetra-
6
. Lane, B. S.; Burgess, K. J. Am. Chem. Soc. 2001, 123,
mesitylporphinato dianion] is a poorer catalyst in
alkane hydroxylations by m-CPBA, the high reactivity
of simple cobalt salt compared to cobalt porphyrin
complexes suggests that as the electron-richness of
cobalt ion increases, the activity of cobalt ion toward
alkane hydroxylation becomes lower. In conclusion, the
results presented above indicate that, as we have
expected, there is a porphyrin ligand effect on the
catalytic activity of metal ions, but the increase or
decrease in the catalytic activity depends on the metal
ions.
2
933.
. (a) Yao, H.; Richardson, D. E. J. Am. Chem. Soc. 2000,
22, 3220; (b) Richardson, D. E.; Yao, H.; Frank, K. M.;
7
1
Bennett, D. A. J. Am. Chem. Soc. 2000, 122, 1729.
. Groves, J. T.; McClusky, G. A. J. Am. Chem. Soc. 1976,
98, 859.
9. Groves, J. T.; Nemo, T. E. J. Am. Chem. Soc. 1983, 105,
6243.
10. (a) Ingold, K. U.; MacFaul, P. A. In Biomimetic Oxida-
tions Catalyzed by Transition Metal Complexes; Meunier,
B., Ed.; Imperial College Press: London, 2000; pp. 45–89;
8
(
b) MacFaul, P. A.; Ingold, K. U.; Wayner, D. D. M.;
Que, L., Jr. J. Am. Chem. Soc. 1997, 119, 10594.
1. Russell, G. A. J. Am. Chem. Soc. 1957, 79, 3871.
2. The ketone formation via the further oxidation of alcohol
product has been observed in the hydroxylation of alka-
nes by peracetic acid catalyzed by a ruthenium salt and a
manganese complex of 1,4,7-trimethyl-1,4,7-triazacy-
clononane ligand. (a) Murahashi, S.-I.; Oda, Y.; Komiya,
N.; Naota, T. Tetrahedron Lett. 1994, 35, 7953; (b)
Lindsay Smith, J. R.; Shul’pin, G. B. Tetrahedron Lett.
1998, 39, 4909.
In summary, we have shown here that simple metal
salts without porphyrin and non-porphyrin ligands are
able to conduct stereospecific alkane hydroxylations via
non-radical types of oxidation reactions. Interestingly,
cobalt salt shows the highest catalytic activity in terms
of product yields. Future studies will focus on attempts
to develop an environmentally benign hydroxylation
method, in which metal salts are used as catalysts and
1
1
aqueous 30% H O and bicarbonate are used to gener-
2
2
6,7
ate percarbonate as an active oxidant.
1
1
3. Nam, W.; Kim, I.; Kim, Y.; Kim, C. Chem. Commun.
2001, 1262.
4. (a) Bernadou, J.; Meunier, B. Chem. Commun. 1998,
Acknowledgements
2167; (b) Lee, K. A.; Nam, W. J. Am. Chem. Soc. 1997,
119, 1916.
15. Although the structure of the high-valent cobalt-oxo
This research was supported by the Korea Research
Foundation (DP0270).
species is not clear at this moment, possible structures for
the suggested cobalt-oxo species are Co =OlCo –O .
V
IV