Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Durrant and E. Reisner, J. Am. Chem. SocD.,O2I0: 1106.,1013398/,C991C8C30-92119972C;
c) R. Kuriki, H. Matsunaga, T. Nakashima, K. Wada, A. Yamakata,
O. Ishitani and K. Maeda, J. Am. Chem. Soc., 2016, 138, 5159-
5170; d) R. Kuriki, K. Sekizawa, O. Ishitani and K. Maeda, Angew.
Chem. Int. Ed., 2015, 54, 2406-2409.
a) J. Hawecker, J. M. Lehn and R. Ziessel, J. Chem. Soc., Chem.
Commun., 1984, 328; b) E. E. Benson, C. P. Kubiak, A. J. Sathrum
and J. M. Smieja, Chem. Soc. Rev., 2009, 38, 89-99.
7
8
9
C. Riplinger, M. D. Sampson, A. M. Ritzmann, C. P. Kubiak and E.
A. Carter, J. Am. Chem. Soc., 2014, 136, 16285-16298.
a) M. W. George, F. P. A. Johnson, J. R. Westwell, P. M. Hodges
and J. J. Turner, J. Chem. Soc., Dalton Trans., 1993, 2977-2979; b)
R. W. Balk, D. J. Stufkens and A. Oskam, J. Chem. Soc., Dalton
Trans., 1981, 1124-1133.
Fig. 5. a) HAADF image of [ReCl(CO)3(g-C3N4)]. Bright areas correspond to location of Re
and Cl; b) higher magnification of the region within the red box of a)
individual atoms but could be consistent with Re-Cl moieties.
In conclusion, direct coordination of metal complex
fragments to bidentate N-donor edge sites represents an
additional functionalisation strategy of g-C3N4, in addition to
intraplanar metal ion/atom coordination, and anchoring via a
covalent linker. Notwithstanding the relatively weak binding
observed for ReCl(CO)3 , there is an opportunity to develop new
classes of multifunctional materials comprising metal
complex/g-C3N4 composites that can exploit, for example, the
photophysical and acid-base chemistry of g-C3N4 for
photocatalytic and catalytic applications.
10 J.-L. Zuo, W.-F. Fu, C.-M. Che and K.-K. Cheung, Eur. J. Inorg.
Chem., 2003, 2003, 255-262.
11 Y. Zhang, J. Liu, G. Wu and W. Chen, Nanoscale, 2012, 4, 5300-
5303.
12 a) X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M.
Carlsson, K. Domen and M. Antonietti, Nat Mater, 2009, 8, 76-
80; b) S. C. Yan, Z. S. Li and Z. G. Zou, Langmuir, 2009, 25, 10397-
10401.
13 J. Martin David, K. Qiu, A. Shevlin Stephen, D. Handoko Albertus,
X. Chen, Z. Guo and J. Tang, Angew. Chem. Int. Ed., 2014, 53,
9240-9245.
14 P. Sundberg, C. Andersson, B. Folkesson and R. Larsson, J.
Electron. Spectrosc. Relat. Phenom., 1988, 46, 85-92.
15 a) S. Oh, J. R. Gallagher, J. T. Miller and Y. Surendranath, J. Am.
Chem. Soc., 2016, 138, 1820-1823; b) Y. Yuan and Y. Iwasawa, J
Phys. Chem. B, 2002, 106, 4441-4449; c) M. Komiyama, Y. Ogino,
Y. Akai and M. Goto, J. Chem. Soc. Farad. T. 2, 1983, 79, 1719-
1728.
The authors thank the University of York for financial
support (doctoral grant for BC). We thank Dr. Adrian Whitwood
for the single crystal X-ray structure determination.
Conflicts of interest
There are no conflicts to declare.
16 M. Majumdar, A. Sinha, T. Ghatak, S. K. Patra, N. Sadhukhan, S.
M. W. Rahaman and J. K. Bera, Chem. Eur. J., 2010, 16, 2574-
2585.
17 a) S. Saha, M. Kaur and J. K. Bera, Organometallics, 2015, 34,
3047-3054; b) S. Jin and D. Wang, Acta Crystallogr. E, 2007, 63,
M3036-U1601; c) S. Jin, D. Wang, Y. Sun and M. Guo, Acta
Crystallogr. E, 2007, 63, M3082-U2007; d) S. W. Jin and Y. Sun,
Acta Crystallogr. E, 2008, 64, M136-U1321; e) S. W. Jin, Q. J. Zhao,
X. G. Qian, R. X. Chen and Y. F. Shi, Acta Crystallogr. E, 2008, 64,
M54-U561.
Notes and references
1
a) J.-M. Basset, R. Psaro, D. Roberto and R. Ugo, Modern Surface
Organometallic Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2009; b) T. Noël, Organometallic Flow Chemistry,
Springer International Publishing AG, Switzerland, 2016.
J. Guzman and B. C. Gates, Dalton T., 2003, DOI:
10.1039/B303285J, 3303-3318.
a) W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong and S.-P. Chai, Chem.
Rev., 2016, 116, 7159-7329; b) Y. Wang, X. Wang and M.
Antonietti, Angew. Chem. Int. Ed., 2012, 51, 68-89; c) Z. X. Zhou,
Y. Y. Zhang, Y. F. Shen, S. Q. Liu and Y. J. Zhang, Chem. Soc. Rev.,
2018, 47, 2298-2321; d) B. Zhu, L. Zhang, B. Cheng and J. Yu, Appl.
Catal B-Environ, 2018, 224, 983-999.
2
3
18 M. Majumdar, S. M. W. Rahaman, A. Sinha and J. K. Bera, Inorg.
Chim. Acta, 2010, 363, 3078-3087.
19 M. Towrie, A. W. Parker, K. L. Ronayne, K. F. Bowes, J. M. Cole, P.
R. Raithby and J. E. Warren, Appl. Spectrosc., 2009, 63, 57-65.
20 a) A. Vlček, in Photophysics of Organometallics, ed. A. J. Lees,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 115-
158; b) L. A. Worl, R. Duesing, P. Chen, L. D. Ciana and T. J. Meyer,
J. Chem. Soc., Dalton Trans., 1991, 849-858.
21 L. Suntrup, S. Klenk, J. Klein, S. Sobottka and B. Sarkar, Inorg.
Chem., 2017, 56, 5771-5783.
22 S. E. Kabir, F. Ahmed, A. Das, M. R. Hassan, D. T. Haworth, S. V.
Lindeman, T. A. Siddiquee and D. W. Bennett, J. Organomet.
Chem., 2008, 693, 1696-1702.
23 A. Rostami-Vartooni, V. Mirkhani, H. A. Rudbari and A. J.
Moghadam, Polyhedron, 2014, 76, 22-28.
24 R. Costa, N. Barone, C. Gorczycka, E. F. Powers, W. Cupelo, J.
Lopez, R. S. Herrick and C. J. Ziegler, J. Organomet. Chem., 2009,
694, 2163-2170.
4
5
6
a) E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll and A.
D. Norman, New J. Chem., 2002, 26, 508-512; b) A. Schwarzer, T.
Saplinova and E. Kroke, Coord. Chem. Rev., 2013, 257, 2032-
2062; c) B. V. Lotsch, M. Döblinger, J. Sehnert, L. Seyfarth, J.
Senker, O. Oeckler and W. Schnick, Chem. Eur. J., 2007, 13, 4969-
4980.
a) S.-L. Li, H. Yin, X. Kan, L.-Y. Gan, U. Schwingenschlogl and Y.
Zhao, Phys. Chem. Chem. Phys., 2017, 19, 30069-30077; b) Y. Cao,
S. Chen, Q. Luo, H. Yan, Y. Lin, W. Liu, L. Cao, J. Lu, J. Yang, T. Yao
and S. Wei, Angew. Chem. Int. Ed., 2017, 56, 12191-12196; c) S.
Hu, F. Li, Z. Fan, F. Wang, Y. Zhao and Z. Lv, Dalton T., 2015, 44,
1084-1092.
a) A. Kumar, P. Kumar, R. Borkar, A. Bansiwal, N. Labhsetwar and
S. L. Jain, Carbon, 2017, 123, 371-379; b) H. Kasap, C. A. Caputo,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins