Journal of Materials Chemistry A
Page 6 of 7
addition of 18 µL LiTFSI (from a stock solution in acetonitrile with
concentration of 1.0 M), 29 µL of tert-butyl pyridine (from a stock
solution in chlorobenzene with concentration of 1.0 M). Finally, a
80 nm Au electrode was deposited by thermal evaporation under
high vacuum.33,44
4. A. Kojima, K. Teshima, Y. Shirai aDndOI:T1.0.M10i3y9a/sCa9kTaA,0J5.12A1mJ .
Chem. Soc., 2009, 131, 6050-6051.
5. Best Research-Cell Effciency Chart reported by NREL,
6. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-
Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate
and A. Hagfeldt, Energy Environ. Sci., 2016, 9, 1989-1997.
7. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin
and M. Grätzel, Adv. Funct. Mater., 2014, 24, 3250-3258.
8. J. W. Lee, D. J. Seol, A. N. Cho and N. G. Park, Adv. Mater.,
2014, 26, 4991-4998.
9. N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin,
J. Maier and M. Grätzel, Angew. Chem., 2014, 126, 3215-3221.
10. M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu and H. Han, J. Mater.
Chem. A, 2014, 2, 17115-17121.
Computational method details
The ground-state geometries were fully optimized using density
functional theory (DFT) with the B3LYP hybrid functional at the
basis set level of 6-31G*, and the frontier molecular orbitals were
drawn using an isovalue of 0.03 a.u. All calculations were
performed using Gaussian 09 package in the PowerLeader
workstation. The molecular orbitals were visualized using Gauss
View 5.0.8.
11. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L.
M. Herz and H. J. Snaith, Energy Environ. Sci., 2014, 7, 982-988.
12. T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, E. M.
Johansson, I. J. McPherson, H. Rensmo, J. M. Ball, M. M. Lee and
H. J. Snaith, ACS Nano, 2014, 8, 7147-7155.
13. N. H. Tiep, Z. Ku and H. J. Fan, Adv. Energy Mater., 2016, 6,
1501420.
14. B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes and D. Cahen,
J. Phys. Chem. Lett., 2015, 6, 1543-1547.
PL quenching efficiency
PL quenching efficiency was calculated using the following
formula:
푃퐿푏푎푟푒 ― 푃퐿푞푢푒푛푐ℎ
휂푞푢푒푛푐ℎ
=
푃퐿푏푎푟푒
Where PL bare and PL quench are integrated PL intensities of
perovskite on sapphire substrates without and with the quenching
HTM layer.
15. Z. Hawash, L. K. Ono, S. R. Raga, M. V. Lee and Y. Qi, Chem.
Mater., 2015, 27, 562-569.
Synthesis cost estimation of 1 gram BEDN
16. L. K. Ono, S. R. Raga, M. Remeika, A. J. Winchester, A. Gabe
and Y. Qi, J. Mater. Chem. A, 2015, 3, 15451-15456.
17. T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-
M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale and B.-J. Hwang,
Energy Environ. Sci., 2016, 9, 323-356.
We estimated the synthesis cost of 1 gram BEDN according to the
cost models of Pablo et al.24 and Osedach et al.23 The price of the
materials used has been obtained from Merck, Sigma Aldrich,
DeJong companies. We compared the price of 1 gram of this new
HTM with the price of 1 gram of spiro-OMeTAD, which is reported
in the literature (Please see the ESI, Table S1).33,45
18. M. Grätzel, Nat. Mater., 2014, 13, 838.
19. Y. H. Lee, J. Luo, R. Humphry‐Baker, P. Gao, M. Grätzel and
M. K. Nazeeruddin, Adv. Funct. Mater., 2015, 25, 3925-3933.
20. C. Rodríguez-Seco, L. Cabau, A. Vidal-Ferran and E.
Palomares, Acc. Chem. Res., 2018, 51, 869-880.
Conductivity Measurements
21. A. Magomedov, S. Paek, P. Gratia, E. Kasparavicius, M.
Daskeviciene, E. Kamarauskas, A. Gruodis, V. Jankauskas, K.
Kantminiene and K. T. Cho, Adv. Funct. Mater., 2018, 28,
1704351.
22. N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Grätzel
and S. I. Seok, J. Am. Chem. Soc., 2013, 135, 19087-19090.
23. T. P. Osedach, T. L. Andrew and V. Bulović, Energy Environ.
Sci., 2013, 6, 711-718.
24. M. Petrus, T. Bein, T. Dingemans and P. Docampo, J. Mater.
Chem. A, 2015, 3, 12159-12162.
25. K. Rakstys, M. Saliba, P. Gao, P. Gratia, E. Kamarauskas, S.
Paek, V. Jankauskas and M. K. Nazeeruddin, Angew. Chem., 2016,
128, 7590-7594.
Glass substrates without conductive layer were cleaned carefully
with detergents, deionized water, acetone and ethanol, respectively.
Then to remove remaining organic residues, the substrates were
sintered at 500 ºC. A thin layer of nanoporous TiO2 was coated on
the glass substrates by spin-coating with a diluted TiO2 paste (PST-
20T) with ethanol (1:3, mass ratio). After that, TiO2 film was
sintered in the oven at 500 ° C. Then a solution of HTM in
chlorobenzene (concentrations similar to photovoltaic devices) was
deposited by spin-coating on TiO2 layer. Finally, an Au layer was
deposited on top of the HTM layer by thermal evaporation.
Mobility Measurements
26. A. J. Huckaba, P. Sanghyun, G. Grancini, E. Bastola, C. K.
Taek, L. Younghui, K. P. Bhandari, C. Ballif, R. J. Ellingson and
M. K. Nazeeruddin, ChemistrySelect, 2016, 1, 5316-5319.
27. A. T. Murray, J. M. Frost, C. H. Hendon, C. D. Molloy, D. R.
Carbery and A. Walsh, Chem. Commun., 2015, 51, 8935-8938.
28. J. P. Wolfe and S. L. Buchwald, J. Org. Chem., 1997, 62, 1264-
1267.
29. J. P. Wolfe and S. L. Buchwald, J. Org. Chem., 2000, 65, 1144-
1157.
30. P. Ruiz-Castillo and S. L. Buchwald, Chem. Rev., 2016, 116,
12564-12649.
The hole mobility of HTMs has been investigated according to
literature.39-40 The devices of BEDN and spiro-OMeTAD were
fabricated with the structure ITO/PEDOT:PSS/HTM/Au. The hole
mobility values were calculated using the Mott–Gurney law.41
References:
1. F. De Angelis, D. Meggiolaro, E. Mosconi, A. Petrozza, M. K.
Nazeeruddin and H. J. Snaith, ACS Energy Lett., 2017, 2, 857-861.
2. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J.
Snaith, Science, 2012, 1228604.
3. F. De Angelis and P. Kamat, ACS Energy Lett., 2017, 2, 1674-
1676.
31. C. Peng, G.-H. Ning, J. Su, G. Zhong, W. Tang, B. Tian, C.
Su, D. Yu, L. Zu and J. Yang, Nat. Energy, 2017, 2, 17074.
32. Y. Zeng, R. Zou, Z. Luo, H. Zhang, X. Yao, X. Ma, R. Zou and
Y. Zhao, J. Am. Chem. Soc., 2015, 137, 1020-1023.
6