View Article Online
complexing agents.13 The most effective reactions occur with
alkynes possessing at least one aryl or carboalkoxy group
Org. Chem., 1997, 62, 5838; S. Tollari, S. Cenini, C. Crotti and E.
Gianella, J. Mol. Catal., 1994, 87, 203; M. Akazome, T. Kondo and Y.
Watanabe, Chem. Lett., 1992, 769; M. Yamaguchi, M. Arisawa and M.
Hirama, J. Chem. Soc., Chem. Commun., 1998, 1399; Y. Nishiyama, R.
Maema, K. Ohno, M. Hirose and N. Sonoda, Tetrahedron Lett., 1999,
40, 5717.
(
entries 1–4 vs. 5). As above, phenylacetylene and arylalkyl
alkynes reacted with complete regioselectivity ( > 99%), plac-
ing the aryl substituent at the 3-position (entries 1–3, 6–10),
while ethyl phenylpropiolate afforded a 2:1 mixture of
6 S. Cenini and F. Ragaini Catalytic Reductive Carbonylation of Organic
Nitro Compounds, Kluwer Academic, Dordrecht, Netherlands, 1997.
3
-phenyl/2-phenyl regioisomers.
7
A. Srivastava, Y. Ma, R. Pankayatselvan, W. Dinges and K. M.
Nicholas, J. Chem. Soc., Chem. Commun., 1992, 853; R. S. Srivastava
and K.M. Nicholas, Tetrahedron Lett., 1994, 8739; R. S. Srivastava and
K. M. Nicholas, J. Org. Chem., 1994, 59, 5365; R. S. Srivastava, M. A.
Khan and K. M. Nicholas, J. Am. Chem. Soc., 1996, 118, 3311; R. S.
Srivastava and K. M. Nicholas, J. Chem. Soc., Chem. Commun., 1996,
2335; R. S. Srivastava and K. M. Nicholas, J. Am. Chem. Soc., 1997,
119, 3302.
The mechanistic pathway for this remarkable transformation,
which involves N-centered reduction, C–H activation, and the
formation of both C–N and C–C bonds is presently unknown
but the following initial observations are informative. No
reaction occurs in the absence of either catalyst or carbon
monoxide, consistent with the precedented ability of metal
carbonyl complexes to promote deoxygenation of nitro com-
3
pounds. Under the same conditions employed for the nitroar-
8 R. S. Srivastava and K. M. Nicholas, J. Chem. Soc., Chem. Commun.,
1998, 2705; M. K. Kolel-Veetil, M. A. Khan and K. M. Nicholas,
Organometallics, 2000, 19, 3754.
ene/alkyne reactions, a mixture of nitrosobenzene, phenyl-
acetylene and 1c also was converted to 3-phenylindole, faster
and in greater yield (18 h, 53% yield),14 suggesting the
9 Product characterization details are available in the ESI†.
1
0 [CpFe(CO)
2
]
2
2
and [Cp*Fe(CO)
2
]
2
are commercially available;
(CO)12 with Cp*-H
intermediacy of the nitrosoarene (free or coordinated) in the
nitroarene reactions. On the other hand no carbazole was
detected in the reaction of o-nitrobiphenyl with PhC·CH (1c,
benzene, 170 °C, 750 psi), rendering unlikely the intermediacy
of a free aryl nitrene.15 Similarly, possible formation of the
indoles by metal-promoted heterocyclization of azobenzene16
[Cp*Ru(CO)
]
2
was prepared by the reaction of Ru
3
according to R. B. King, M. Z. Iqbal and A. D. King, J. Organomet.
Chem., 1979, 171, 53.
11 The following procedure was used for all the catalytic reactions. A
stainless steel autoclave fitted with a glass liner was charged with
catalyst (0.15 mmol), nitro compound (3 mmol), alkyne (12 mmol), a
spatula of 4 Å molecular sieves, and distilled solvent (dioxane or
benzene, 10 ml). In a well-ventilated fume hood the autoclave was
purged with CO three times and then pressurized to 750 psi. The vessel
was then heated to 170° C for 48–72 h. After cooling, the autoclave was
vented in the fume hood. Partial recovery of the catalyst (20–30%) can
be achieved by precipitation with excess hexane. The solvent was
removed by rotary evaporation and the products were isolated by flash
(
present as a by-product) was excluded by the failure of the
latter to be converted to 3-phenylindole under the catalytic
reaction conditions. It is also noteworthy, both mechanistically
and synthetically, that complex 1c is largely recovered
following catalytic runs. The unique activity of the dinuclear
[
2 2
CpM(CO) ] complexes 1 to catalyze the reductive aminations
of alkenes and alkynes by nitroarenes is extraordinary,
considering their stable, eighteen electron count and very
limited catalytic history.17 The ability of 1 to dissociate to
2 2
chromatography over silica gel. Elution with 4+1 CH Cl –pet. ether
afforded the products (yield, R ): azoarene (5–15%, 0.7), azoxyarene
f
(4–22 %, 0.5), indole (20–50%, ca. 0.3), arylamine (7–20%, 0.1).
12 Representatives of the following classes of complexes failed to catalyze
18
seventeen electron organometallic radicals and/or to undergo
facile redox reactions19 may be relevant to their special catalytic
activity.
indole formation: PdX
2
L
2
,
PdL
3
4
,
RuCl
2
(C
6
H
6
)/L, Ru
3
(CO)12/L;
2
Rh(CO) I
2 2
active.
, (Me-Cp)Mn(CO) and [Cp*Cr(CO) ]
3 3
were also in-
The presently disclosed novel annulation reaction provides a
direct and regioselective route to indoles from nitroaromatics,
the most readily available of N-functionalized aromatic com-
pounds, and alkynes. Although the indole yields presently are
only moderate, the directness, regioselectivity and neutral
reaction conditions of this annulation route portend its wide
synthetic utility. Our current efforts are centered on identifying
more active and efficient catalyst systems and on exploring the
synthetic scope and the mechanism of this remarkable trans-
formation.
1
3 J. Y. Merour and B. Joseph, Curr. Top. Org. Chem., 2001, 5, 471; M.
Allegretti, A. Arcadi, F. Marinelli and L. Nicolini, Synlett, 2001, 609; K.
Takeuchi, J. A. Bastian, D. S. Gifford-Moore, R. W. Harper, S. C.
Miller, J. T. Mullaney, D. J. Sall, G. F. Smith, M. Zhang and M. J.
Fisher, Bioorg. Med. Chem. Lett., 2000, 10, 2347; Q. Wu, J. A. Lavigne,
Y. Tao, M. D’Iorio and S. Wang, Inorg. Chem., 2000, 39, 5248; R. E.
Mewshaw and X. T. Shah, Patent Appl. US 6221863, 2001; L. Edwards,
A. Slassi, A. Tehim and T. Xin Patent Appl. US 6191141, 2001 ; H. W.
Pauls and W. R. Ewing, Curr. Top. Med. Chem., 2001, 1, 83; B. C.
Askew, M. J. Breslin, M. E. Duggan, J. H. Hutchinson, R. S. Meissner,
J. J. Perkins, T. G. Steele and M. A. Patane Patent Appl. 2001-2001 US
We are grateful for financial support provided by the
National Science Foundation and the Ministero dell’Universita’
e della Ricerca Scientifica e Tecnologica (Italy).
1
953, 2001; P. J. Cox, T. N. Majid, J. Y. Q. Lai, A. D. Morley, S.
Amendola, S. Deprets and C. Edlin Patent Appl. 2000-2000 GB 4993,
2000; P. Zakrzewski, M. Gowan, L. A. Trimble and C. K. Lau,
Synthesis, 1999, 11, 1893; R. Fontan, C. Galvez and P. Viladoms,
Heterocycles, 1981, 16, 1473; R. Beugelmans, B. Boudet and L.
Quintero, Tetrahedron Lett, 1980, 21, 1943.
Notes and references
1
4 A. Penoni, J. Volkmann and K. M. Nicholas Org. Lett., in press.
1
(a) R. J. Sundberg Indoles, Academic, London, UK, 1996R. J. Sundberg
in Comprehensive Heterocyclic Chemistry, 2nd ed., vol. 2, ed. C. W.
Bird, Pergamon, Oxford, UK, 1995, pp. 121–157.
15 R. J. Sundberg, M. Brenner, S. R. Suter and B. P. Das, Tetrahedron
Lett., 1970, 2715; R. J. Sundberg and R. W. Heintzelmen, J. Org. Chem.,
1974, 39, 2546.
2
3
B. Robinson The Fischer Indole Synthesis, John Wiley and Sons, New
York, 1982, ref. 1a, p. 54–70.
16 U. Durr and H. Kisch, Synlett, 1997, 1335.
17 J. Tsuji and Y. Mori, Bull. Chem. Soc. Jpn., 1969, 42, 527; B. Giese and
P. G. Gassman, T. J. van Bergen, D . P. Gilbert and B. W. Cue, J. Am.
Chem. Soc., 1974, 96, 5495; T. Sugasawa, M. Adachi, K. Sasakura and
A. J. Kitagawa, Org. Chem., 1979, 44, 578; G. Bartoli, M. Bosco, R.
Dalpozzo, G. Palmeri and E. J. Marcantoni, J. Chem. Soc., Perkin
Transactions 1, 1991, 2757; J. R. Hwu, H. V. Patel, R. J. Lin and M. O.
Gray, J. Org. Chem., 1994, 59, 1577.
L. S. Hegedus, Angew. Chem., Int. Ed. Engl., 1988, 27, 1113; J. J. Liin
Alkaloids: Chemical and Biological Perspectives, 1999, 14, 437.
R. C. Larock, E. K. Yum and M. D. Refvik, J. Org. Chem., 1998, 63,
G. Thoma, Helv. Chim. Acta, 1991, 74, 1143.
18 I. Kuksis and M. C. Baird, Organometallics, 1996, 15, 4755; D. B.
Moore, M. B. Simpson, M. Poliakoff and J. J. Turner, J. Chem. Soc.,
Chem. Commun., 1984, 972; B. D. Moore, M. Poliakoff and J. J. Turner,
J. Am. Chem. Soc., 1986, 108, 1819; P. E. Bloyce, A. K. Campen, R. H.
Hooker, A. J. Rest, N. R. Thomas, T. E. Bitterwolf and J. E. Shade, J.
Chem. Soc., Dalton Trans., 1990, 2833; A. J. Dixon, M. W. George, C.
Hughes, M. Poliakoff and J. J. Turner, J. Am. Chem. Soc., 1992, 114,
1719.
4
5
7
652; A. Arcadi, S. Cacchi and F. Marinelli, Tetrahedron Lett., 1992,
19 H. J. Schumann J. Organomet. Chem., 1985, 290, C34P. F. Boyle and
K. M. Nicholas, J. Organomet. Chem., 1976, 114, 307; B. D. Dombek
and R. J. Angelici, Inorg. Chim. Acta, 1973, 7, 345; J. E. Ellis and E. A.
Flom, J. Organomet. Chem., 1975, 99, 26.
3
3, 3915; S. Cacchi, G. Fabrizzi, F. Marinelli, L. Moro and P. Pace,
Synlett, 1997, 1363; B. C. Soderberg, S. R. Rector and S. N. OANeil,
Tetrahedron Lett., 1999, 40, 3657; B. C. Soderberg and J. A. Shriver, J.
CHEM. COMMUN., 2002, 484–485
485