Journal of the American Chemical Society
Page 6 of 8
2
pixels. The large area (0.13 cm ) device is also fabricated, show-
ing the PCE deviation of less than 0.5%. Device Characterization
can be found in Supporting Information.
REFERENCES
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(1) Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang,
J. Science 2015, 347, 967-970.
GIWAXS. Giwaxs studies were performed at Shanghai Synchro-
tron Radiation Facility, Shanghai, China, using a beam energy of
(2) Yin, W.-J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903.
(3) Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.;
Herz, L. M. Adv. Mater. 2014, 26, 1584-1589.
1
2
0 keV (λ=1.2398 Å). Images were acquired with a 30s (for 0%,
0%, 40%, 60% samples) or 10s (for 80% and 100% samples)
exposure time using a Mar 225 detector. A coin was used to shade
the center area of the diffraction patterns. The distance between
the sample and detector was 360mm. The grazing incidence an-
gles for 0%, 20%, 40%, 60%, 80% and 100% films were 0.2º,
(4) Takahashi, Y.; Hasegawa, H.; Takahashi, Y.; Inabe, T. J. Solid
State Chem. 2013, 205, 39-43.
(5) Lim, K. G.; Kim, H. B.; Jeong, J.; Kim, H.; Kim, J. Y.; Lee, T. W.
Adv. Mater. 2014, 26, 6461-6466.
(6) Lim, K. G.; Ahn, S.; Kim, Y. H.; Qi, Y.; Lee, T. W. Energy & En-
viron. Sci. 2016, 9, 932-939.
(7) Kim, H.; Lim, K. G.; Lee, T. W. Energy & Environ. Sci. 2016, 9,
0
.3º, 0.3º, 0.3º, 1.0º, and 0.2º, respectively. Other characterizations
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
can be found in Supporting Information.
12-30.
(8) Lim, K. G.; Ahn, S.; Kim, H.; Choi, M. R.; Huh, D. H.; Lee, T. W.
First Principles Calculations. First principles calculations are
performed within the framework of density functional theory
Adv. Mater. Interfaces. 2016, 3, 1500678.
(9) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photon. 2014, 8,
(DFT) using plane-wave pseudopotential methods as implemented
5
06-514.
49, 50
in the Vienna Ab-initio Simulation Package
. The electron-ion
(10) Snaith, H. J. J. Phys. Chem. Lett. 2013, 4, 3623-3630.
interaction is described by the projected augmented pseudopoten-
(11) Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395-398.
(12) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem.
51
2
2
2
5
tial method , and electron configurations of 5s 5p for Sn, 5s 5p
2
2
2
3
Soc. 2009, 131, 6050-6051.
13) Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Energy & Environ. Sci.
2014, 7, 2448-2463.
14) Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A.
J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan Y. Adv. Mater. 2016,
8, 9333-9340.
15) Öz, S.; Hebig, J.-C.; Jung, E.; Singh, T.; Lepcha, A.; Olthof, S.;
for I, 2s 2p for C, 2s 2p for N, and 1s for H are considered as
valence electrons. The generalized gradient approximation formu-
(
5
2
lated by Perdew, Burke, and Ernzerhof is used as the exchange-
correlation functional. The electronic wave-functions are expend-
ed in plane-wave basis sets with kinetic energy cutoff of 400 eV.
The Monkhorst-Pack k-point meshes with grid spacing of
(
2
(
-
1
2
π×0.04 Å or less are used for electronic Brillouin zone integra-
Jan, F.; Gao, Y.; German, R.; van Loosdrecht, P. H. M.; Meerholz, K.;
Kirchartz, T.; Mathur, S. Sol. Energy Mater. Sol. Cells 2016, 158, 195-
tion. The equilibrium structural parameters (including both lattice
parameters and internal coordinates) of each involved material are
obtained via total energy minimization by using the conjugate-
gradient algorithm, with the force convergence threshold of 0.01
eV/Å. To properly take into account the long-range van der Waals
2
01.
(
(
16) Zhu, H. X.; Liu, J. M. Sci Rep 2016, 6, 37425.
17) Cortecchia, D.; Dewi, H. A.; Yin, J.; Bruno, A.; Chen, S.; Baikie,
T.; Boix, P. P.; Gratzel, M.; Mhaisalkar, S.; Soci, C.; Mathews, N. Inorg.
Chem. 2016, 55, 1044-1052.
(vdWs) interaction that plays a non-ignorable role in the hybrid
(18) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis,
perovskites involving organic molecules, the vdWs-optB86b func-
M. G. Nat. Photon. 2014, 8, 489-494.
53
tional is adopted.
(19) Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarne-
ra, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.;
Johnston, M. B. Energy & Environ. Sci. 2014, 7, 3061-3068.
(20) Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar,
ASSOCIATED CONTENT
Supporting Information
R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel M.;
Mhaisalkar S. G.; Mathews N. Adv. Mater. 2014, 26, 7122-7127.
(21) Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W.
The Supporting Information is available free of charge on the
ACS Publications website at DOI:
Experimental details and additional supplementary figures (PDF)
L.; Boix, P. P.; Grimsdale, A. C.; Mhaisalkar, S. G.; Mathews, N. J. Ma-
ter. Chem. A 2015, 3 , 14996-15000.
(22) Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.;
Seo, J.; Seok, S. I. J. Am. Chem. Soc. 2016, 138, 3974-3977.
(23) Ergen, O.; Gilbert, S. M.; Pham, T.; Turner, S. J.; Tan, M. T. Z;
AUTHOR INFORMATION
Corresponding Author
Worsley, M. A.; Zettl, A. Nat Mater 2016. DOI:10.1038/nmat4795
(24) Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang,
R. P. H.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 11445-11452.
(25) Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L. ACS Nano
*E-mail: lijun_zhang@jlu.edu.cn.
2
015, 9, 1955-1963.
26) Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. J. Am.
Chem. Soc. 2015, 137, 1530-1538.
27) Leguy, A. M. A.; Hu, Y.; Campoy-Quiles, M.; Alonso, M. I.; We-
*E-mail: ningzhj@shanghaitech.edu.cn.
(
Author Contributions
These authors contributed equally.
(
†
ber, O. J.; Azarhoosh, P.; Van Schilfgaarde, M.; Weller, M. T.; Bein, T.;
Nelson, J.; Docampo P.; Barnes P. R. F.; Chem. Mater. 2015, 27, 3397-
3407.
Notes
(
28) Zhao, L.; Kerner, R. A.; Xiao, Z.; Lin, Y. L.; Lee, K. M.;
Schwartz, J.; Rand, B. P. ACS Energy Lett. 2016, 1, 595-602.
29) Liu, Z.; Sun, B.; Shi, T.; Tang, Z.; Liao, G. J. Mater. Chem. A
2016, 4, 10700-10709.
30) Mitzi, D. B.; Feild, C.; Harrison, W.; Guloy, A. Nature 1994, 369.
67-469.
The authors declare no competing financial interests.
(
ACKNOWLEDGMENT
(
The authors gratefully acknowledge financial support from the
National Key Research and Development Program of China (un-
der Grants No. 2016YFA0204000 and 2016YFB0201204),
ShanghaiTech start-up funding, 1000 young talent program, Na-
tional Natural Science Foundation of China (U1632118,
4
2
(
31) Kagan, C. R..; Mitzi, D. B.; Dimitrakopoulos, C. D., Science 1999,
86, 945-947.
(32) Mitzi, D. B. J. Solid State. Chem. 1999, 145, 694-704.
(33) Smith, I. C.; Hoke, E. T.; SolisËIbarra, D.; McGehee, M. D.;
2
1571129), Shanghai key research program (16JC1402100),
Karunadasa, H. I. Angew. Chem. 2014, 126, 11414-11417.
(34) Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.; Kanatzid-
is, M. G. J. Am. Chem. Soc. 2015, 137, 7843-7850.
Shanghai International Cooperation Project (16520720700), and
National Natural Science Foundation of China (under Grants No.
11404131 and 11674121). The authors appreciated Shanghai Syn-
chrotron Radiation Facility, China.
6
ACS Paragon Plus Environment