August 2006
1669
and 67 mM respectively), while naproxen only had low activ-
R. I., Herman R., Rider L., Kimmel S., Weissmann G., Proc. Natl.
Acad. Sci. U.S.A., 82, 7227—7231 (1985).
Halliwell B., Gutteridge J. M. C., Aruoma O. I., Anal. Biochem., 165,
51)
ity within the tested concentrations. The differences in the
effective concentrations observed, compared to the present
study, strongly suggests that in vitro screening systems are
much more important for determining relative potencies
among putative scavengers than for extrapolating effective
concentrations. In accordance with this, ketoprofen and
ibuprofen were demonstrated to protect B65 neuronal cells (a
rat neuroblastoma cell line) against ˙NO induced cell death,
6
)
2
15—219 (1987).
7
8
)
)
Ching T. L., Jong J., Bast A., Anal. Biochem., 218, 377—381 (1994).
Ohyashiki T., Nunomara M., Katoh T., Biochim. Biophys. Acta, 1421,
131—139 (1999).
9
1
1
)
Barja G., J. Bioenerg. Biomemb., 34, 227—233 (2002).
0) Halliwell B., Hoult J. R., Blake D. R., FASEB, 2, 2867—2873 (1988).
1) Salvemini D., Wang Z. Q., Bourdon D. M., Stern M. K., Currie M. G.,
Manning P. T., Eur. J. Pharmacol., 303, 217—220 (1996).
51)
again within therapeutic concentrations (333 nM—333 mM).
12) Cuzzocrea S., Zingarelli B., Costantino G., Szabó A., Salzman A. L.,
It is worth mentioning that the interference with ˙NO by
NSAIDs may also be due to the inhibition of inducible NO
synthase (iNOS), which was already demonstrated for APA
NSAIDs. Indeed, in an in vitro model involving RAW 264.7
macrophages, it was demonstrated that iNOS mRNA expres-
Caputi A. P., Szabó C., Br. J. Pharmacol., 121, 1065—1074 (1997).
1
1
1
1
3) Halliwell B., Cell Biol. Int. Rep., 6, 529—542 (1982).
4) Weiss J. R., New Engl. J. Med., 320, 365—376 (1989).
5) Yang K. D., Hill H. R., J. Pediatrics, 119, 343—354 (1991).
6) Hasegawa H., Suzuki K., Nakaji S., Sugawara K., J. Immunol. Meth-
ods, 210, 1—10 (1997).
5
2,53)
sion is suppressed by flurbiprofen and ibuprofen,
an ef- 17) Dallegri F., Patrone F., Ballestrero A., Ottonello L., Ferrando F., Sac-
chetti C., Int. J. Tissue React., 12, 107—111 (1990).
8) Fernandes E., Toste S., Lima J. L. F. C., Reis S., Free Radic. Biol.
Med., 35, 1008—1117 (2003).
9) Fernandes E., Costa D., Toste S. A., Lima J. L. S. C., Reis S., Free
Radic. Biol. Med., 37, 1895—1905 (2004).
fect related to the inhibition of transcription factor activation
1
1
2
2
2
like NF-kB and AP-1, resulting in diminished formation of
5
3,54)
pro-inflammatory factors like iNOS and TNF-a.
How-
ever, the putative beneficial effects resulting from lower lev-
els of ˙NO should be interpreted cautiously since the possible
depletion of physiological ˙NO concentrations may also be
harmful for the patient. ˙NO, at physiological levels is mainly
involved in homeostatic biochemical and physiological
0) Costa D., Gomes A., Reis S., Lima J. L. F. C., Fernandes E., Life Sci.,
7
6, 2841—2848 (2005).
1) Costa D., Marques A. P., Reis R. L., Lima J. L. F. C., Fernandes E.,
Free Radic. Biol. Med., 40, 632—640 (2006).
2) Twomey B., Dale M., Biochem. Pharmacol., 43, 413—418 (1992).
processes such as signal transduction, neurotransmission, 23) Landoni M. F., Cunningham F. M., Lees P., Vet. Rec., 137, 428—431
(
1995).
smooth muscle relaxation, peristalsis, gastroprotective ef-
fects, inhibition of platelet aggregation, blood pressure mod-
ulation, immune system control as well as learning and mem-
2
4) Zapolska-Downar D., Zapolski-Downar A., Bukowska H., Galka H.,
Naruszewicz M., Life Sci., 65, 2289—2303 (1999).
5) Parij N., Nagy A. M., Fondu P., Nève J., Eur. J. Pharmacol., 352,
299—303 (1998).
2
55,56)
ory.
Therefore, a possible variation of ˙NO physiological
levels by APA NSAIDs could potentially affect these physio- 26) Aruoma O. I., Gen. Pharmac., 28, 269—272 (1997).
2
7) Gomes A., Fernandes E., Lima J. L. F. C., J. Fluorescenc., 16, 119—
39 (2006).
8) Ullrich T., Oberle S., Abate A., Schroder H., FEBS Lett., 406, 66—68
1997).
logical processes.
In conclusion, the results obtained in the present work
demonstrate that under the present experimental conditions,
1
2
(
many of the studied APA NSAIDs showed to be scavengers 29) Beckman J. S., Chen J., Ischiropoulos H., Crow J. P., Methods Enzy-
ꢀ
of O2˙ (fenbufenꢀflurbiprofenꢀindoprofenꢀketoprofen),
mol., 223, 229—240 (1994).
0) Whiteman M., Ketsawatsakul U., Halliwell B., Ann. N.Y. Acad. Sci.,
3
H O
(ketoprofenꢀindoprofenꢀfenbufenꢁflurbiprofenꢁ
2
2
9
62, 242—259 (2002).
naproxen), HO˙ (fenoprofenꢀibuprofenꢁfenbufenꢀflurbi-
profenꢁketoprofenꢁindoprofenꢀnaproxen), ˙NO (indopro-
fenꢁnaproxen), ONOO (indoprofenꢁnaproxenꢁfenopro-
3
3
1) Schulz M., Schmoldt A., Pharmazie, 58, 447—474 (2003).
2) Hiller K. O., Wilson R. L., Biochem. Pharmacol., 32, 2109—2111
(1983).
ꢀ
3
3
3
3
3
3) Aruoma O. I., Halliwell B., Xenobiotica, 18, 459—470 (1988).
4) Parij N., Nagy A. M., Neve J., Free Radic. Res., 23, 571—579 (1995).
5) Ng T. B., Liu F., Zhao L., J. Neural. Transm., 107, 1243—1251 (2000).
6) Li C., Xie B., J. Agric. Food Chem., 48, 6362—6366 (2000).
7) Moran J. F., Klucas R. V., Grayer R. J., Abian J., Becana M., Free
Radic. Biol. Med., 22, 861—870 (1997).
fenꢀflurbiprofenꢀibuprofen), to inhibit MPO activity (indo-
profen) and to scavenge human neutrophil derived ROS
(ketoprofenꢁindoprofenꢁfenbufenꢁflurbiprofen). The ob-
served effects, if confirmed in vivo, may strongly contribute
to the anti-inflammatory therapeutical activity of these
NSAIDs.
38) Barnes P. J., Free Radic. Biol. Med., 9, 235—243 (1990).
9) Hampton M. B., Kettle A. J., Winterbourn C. C., Blood, 92, 3007—
3
3
017 (1998).
Acknowledgements The authors acknowledge the finan-
4
0) Halliwell B., Gutteridge J. M., Mol. Aspects Med., 8, 89—193 (1985).
cial support given by Reitoria da Universidade do Porto and 41) Winterbourn C. C., Biochim. Biophys. Acta, 840, 204—210 (1985).
Caixa Geral de Depósitos (REIT-EF 2005/2006). David 42) Neve J., Parij N., Moguilevsky N., Eur. J. Pharmacol., 417, 37—43
(
2001).
Costa acknowledges FCT and FSE his PhD grant
SFRH/BD/10483/2002).
4
4
3) Gyllenhammar H., J. Immunol. Methods, 97, 209—213 (1987).
4) Li Y., Zhu H., Kuppusamy P., Roubaud V., Zweier J. L., Trush M. A., J.
Biol. Chem., 273, 2015—2023 (1998).
(
REFERENCES
45) Smith R. J., Iden S. S., Biochem. Pharmacol., 29, 2389—2395 (1980).
46) Kaplan H. B., Edelson H. S., Korchak H. M., Given W. P., Abramson
1
2
3
)
)
)
Bird H. A., Drugs Aging, 12, 87—95 (1998).
Davies N. M., Clin. Pharmacokinet., 34, 101—154 (1998).
Patel B. K., Hanna-Brown M., Hadley M. R., Hutt A. J., Electrophore- 48) Cuzzocrea S., Riley D. P., Caputi A. P., Salvemini D., Pharmacology
sis, 25, 2625—2656 (2004).
Reviews, 53, 135—159 (2001).
Panico A. M., Cardil V., Vittorio F., Ronsisvalle G., Scoto G. M., Par- 49) Miyasaka N., Hirata Y., Life Sci., 61, 2073—2081 (1997).
S., Weissmann G., Biochem. Pharmacol., 33, 371—378 (1984).
47) Nielsen V. G., Webster R. O., Immunopharmacol., 13, 61—71 (1987).
4
)
)
enti C., Gentile B., Morrone R., Nicolosi G., Il Farmaco, 58, 1339—
344 (2003).
Abramson S., Korchak H., Ludewig R., Edelson H., Haines K., Levin
50) Briviba K., Klotz L. O., Sies H., Methods Enzymol., 301, 391—411
(1999).
51) Asanuma M., Nishibayashi-Asanuma S., Miyazaki I., Kohno M.,
1
5