10.1002/anie.202006994
Angewandte Chemie International Edition
COMMUNICATION
Winter, Angew. Chem. Int. Ed. 2016, 55, 12412-12416; Angew. Chem.
2016, 128, 12600-12604.
with
the
natural
counterpart,
this
dipeptide-based
supramolecular catalyst possesses the apparent catalysis
efficiency up to two times. Moreover, it exhibits much more
considerable stability in the practice. Furthermore, the enzyme-
like activity of such assembled nanoarchitecture can be easily
tuned in a switchable manner. In addition, the hierarchical
nanostructures of this supramolecular catalyst bring easy solid-
liquid separation and have obvious advantages over the natural
enzyme. Considering the facile supramolecular assembly, this
strategy above can be extended to fabricate other artificial
biocatalysts toward robust and efficient chemical transformations.
[7]
[8]
a) K. Tao, P. Makam, R. Aizen, E. Gazit, Science 2017, 358, 6365; b)
S. Bera, S. Mondal, B. Xue, L. Shimon, Y. Cao, E. Gazit, Nat. Mater.
2019,18, 503-509; c) X. Du, J. Zhou, J. Shi, B. Xu, Chem. Rev. 2015,
115, 13165-13307.
a) O. Berger, L. Adler-Abramovich, M. Levy-Sakin, A. Grunwald, Y.
Liebes-Peer, M. Bachar, L. Buzhansky, E. Mossou, V. Forsyth, T.
Schwartz, Y. Ebenstein, F. Frolow, L. Shimon, F. Patolsky, E. Gazit,
Nat. Nanotechnol. 2015, 10, 353-360; b) K. Tao, A. Levin, L. Adler-
Abramovich, E. Gazit, Chem. Soc. Rev. 2016, 45, 3935-3953; c) S.
Brahmachari, Z. Arnon, A. Frydman-Marom, E. Gazit, ACS Nano 2017,
11, 5960-5969.
[9]
a) A. Lampel, R. Ulijn, T. Tuttle, Chem. Soc. Rev. 2018, 47, 3737-3758;
b) M. Kumar, N. Ing, V. Narang, N. Wijerathne, A. Hochbaum, R. Ulijn,
Nat. Chem. 2018, 10, 696-703; c) C. Pappas, I. Sasselli, R. Ulijn,
Angew. Chem. Int. Ed. 2015, 54, 8119-8123; Angew. Chem. 2015, 127,
8237- 8241.
Acknowledgements
This work was supported by the National Nature Science
Foundation of China (No. 21961142022 and 21872150), the
Youth Innovation Promotion Association of CAS (No. 2016032)
and Institute of Chemistry, CAS (No. Y6290512B1).
[10] a) M. Reches, E. Gazit, Science 2003, 300, 625-627; b) L. Adler-
Abramovich, E. Gazit, Chem. Soc. Rev. 2014, 43, 6881-6893; c) J.
Wang, K. Liu, R. Xing, X. Yan, Chem. Soc. Rev. 2016, 45, 5589-5604.
[11] a) X. Li, J. Fei, Y. Xu, D. Li, T. Yuan, G. Li, C. Wang, J. Li, Angew. Chem.
Int. Ed. 2018, 57, 1903-1907; Angew. Chem. 2018, 130, 1921-1925; b)
X. Liu, J. Fei, A. Wang, W. Cui, P. Zhu, J. Li, Angew. Chem. Int. Ed.
2017, 56, 2660-2663; Angew. Chem. 2017, 129, 2704-2707; c) J. Fei,
H. Zhang, A. Wang, C. Qin, H. Xue, J. Li, Adv. Healthcare Mater. 2017,
6, 1601198; d) J. Fei, Q. Li, J. Zhao, J. Li, Prog. Chem. 2019, 31, 30-37.
[12] K. Piontek, M. Antorini, T. Choinowski, J. Biol. Chem. 2002, 277, 37663-
37669.
Conflict of interest
The authors declare no conflict of interest.
Keywords: supramolecular assembly • peptide • hierarchical
nanoartchitecture • biocatalysis
[13] E. L. Gavey, M. Pilkington, Coord. Chem. Rev. 2015, 296, 125-152.
[14] a) L. Gao, J. Fei, J. Zhao, W. Cui, Y. Cui, J. Li, Chem. Eur. J. 2012, 18,
3185-3192; b) H. Zhang, J. Fei, X. Yan, A. Wang, J. Li, Adv. Funct.
Mater. 2015, 25, 1193-1204.
[1]
[2]
[3]
a) T. Aida, E. Meijer, S. Stupp, Science 2012, 335, 813-817; b) R.
Freeman, M. Han, Z. Alvarez, J. Lewis, J. Wester, N. Stephanopoulos,
M. McClendon, C. Lynsky, J. Godbe, H. Sangji, E. Luijten, S. Stupp,
Science 2018, 362, 808-813; c) W. Song, F. Tezcan, Science 2014,
346, 1525-1528.
[15]
a) J. Christian, M. Andrzej, J. Biotechnol. 2000, 78, 193-199; b) H.
Esterbauer, E. Schwarzl, M. Hayn, Anal. Biochem. 1977, 77, 486- 494.
a) K. Ariga, M. Nishikawa, T. Mori, J. Takeya, L. K. Shrestha, J. P. Hill,
Sci. Technol. Adv. Mater. 2019, 20, 51-59; b) K. Ariga, D. T. Leong, T.
Mori, Adv. Funct. Mater. 2018, 28, 1702905; c) K. Ariga, S. Watanabe,
T. Mori, J. Takeya, NPG Asia Mater. 2018, 10, 90-106; d) K. Ariga, M.
Ito, T. Mori, S. Watanabe, J. Takeya, Nano Today 2019, 28, 100762.
M. Grzelczak, L. Liz-Marza´n, R. Klajn, Chem. Soc. Rev. 2019, 48,
1342-1361.
[4] a) S. Aldridge, Nat. Biotechnol. 2013, 31, 95-96; b) J. Meeuwissen, J. N.
H. Reek, Nat. Chem., 2010, 2 , 615-621; b) Y. Lin, J. Ren, X. Qu, Acc.
Chem. Res. 2014, 47, 1097-1105; c) Y. Xu, J. Fei, G. Li, T. Yuan, X. Xu,
J. Li, Angew. Chem. Int. Ed. 2019, 58, 5572-5576; Angew. Chem. 2019,
131, 5628-5632; d) A. Vernekar, D. Sinha, S. Srivastava, P.
Paramasivam, P. Silva, G. Mugesh, Nat. Commun. 2014, 5, 5301; e) S.
Ghosh, P. Roy, N. Karmodak, E. Jemmis, G. Mugesh, Angew. Chem.
Int. Ed. 2018, 57, 4510-4515; Angew. Chem. 2018, 130, 4600-4605; f)
L. Gao, M. Liu, G. Ma, Y. Wang, L. Zhao, Q. Yuan, F. Gao, R. Liu, J.
Zhai, Z. Chai, Y. Zhao, X. Gao, ACS Nano 2015, 9, 10979-10990; g) X.
Zhang, R. Liu, Q. Yuan, F. Gao, J. Li, Y. Zhang, Y. Zhao, Z. Chai, L.
Gao, X. Gao, ACS Nano 2018, 12, 11139-11151.
[5]
a) P. Makam, S. Yamijala, K. Tao, L. Shimon, D. Eisenberg, M. Sawaya,
B. Wong, E. Gazit, Nat. Catal. 2019, 2, 977-985; b) O. Zozulia, M.
Dolan, I. Korendovych, Chem. Soc. Rev. 2018, 47, 3621-3639; c) O.
Makhlynets, I. Korendovych, Nat. Catal. 2019, 2, 949-950; d) O.
Makhlynets, P. Gosavi, I. Korendovych, Angew. Chem. Int. Ed. 2016,
55, 9017-9020; Angew. Chem. 2016, 128, 9163-9166.
[6]
a) T. Omosun, M. Hsieh, W. Childers, D. Das, A. Mehta, N. Anthony, T.
Pan, M. Grover, K. Berland, D. Lynn, Nat. Chem. 2017, 9, 805-809; b)
C. Zhang, R. Shafi, A. Lampel, D. MacPherson, C. Pappas, V. Narang,
T. Wang, C. Maldarelli, R. Ulijn, Angew. Chem. Int. Ed. 2017, 56,
14511-14515; Angew. Chem. 2017, 129, 14703-14707; c) T. Luong, N.
Erwin, M. Neumann, A. Schmidt, C. Loos, V. Schmidt, M. Fändrich, R.
4
This article is protected by copyright. All rights reserved.