1
0 min, soaked overnight in DPBS, and dried at 37 1C for 24 h
27 K. O. V. Flores, A. P. de Aguiar, M. R. M. P. de Aguiar and
L. C. de Santa Maria, Mater. Lett., 2007, 61, 1190–1196.
28 D. H. Williams and I. Fleming, Spectroscopic Methods in Organic
Chemistry, McGraw Hill, London, 4 edn. 1987.
prior to adsorption. A stock protein solution of BSA in DPBS
ꢁ
1
5 mg ml ) was used. Each type of modified microparticle was
(
divided into 5 groups (3 replicates) with different incubation times
of 1, 3, 6, 12 and 24 h. The microparticles were incubated in 96-well
plates, containing microparticles (2 mg) and BSA solution (200 mL)
in each well at 37 1C with constant shaking. At every time point,
the supernatant was carefully removed from all the samples and
transferred to a fresh 96-well plate. The BSA concentration in the
supernatant was analyzed spectrophotometrically at 280 nm. The
concentration of proteins adsorbed onto the particles can be
calculated by subtracting the concentration in the supernatant
2
3
3
9 J. Bernard, C. Branger, T. L. A. Nguyen, R. Denoyel and
A. Margaillan, React. Funct. Polym., 2008, 68, 1362–1370.
0 K. S. Birdi, Self-Assembly Monolayer Structures of Lipids and
Macromolecules at Interfaces, Springer, 1999.
1 chemicalize.org was used for generating structure property prediction
and calculations (http://www.chemicalize.org).
erature.html.
33 J. Rieger, J. Therm. Anal., 1996, 46, 965–972.
34 J. Anand, S. Palaniappan and D. N. Sathyanarayana, J. Polym.
Sci., Part A: Polym. Chem., 1998, 36, 2291–2299.
ꢁ1
from 5 mg ml , the actual concentration added before incubation.
35 D. Wang and Y. Liu, Front. Chem. China, 2008, 3, 440–444.
6 M. M. Hann, A. R. Leach and G. Harper, J. Chem. Inf. Model.,
001, 41, 856–864.
37 K. J. Miller and J. A. Savchik, J. Am. Chem. Soc., 1979, 101,
206–7213.
3
2
Acknowledgements
7
EMP gratefully acknowledges receipt of an industrially funded
CASE studentship (Materials KTN and OAS).
38 A. K. Ghose and G. M. Crippen, J. Chem. Inf. Model., 1987, 27,
21–35.
3
9 V. N. Viswanadhan, A. K. Ghose, G. R. Reyankar and
R. K. Robins, J. Chem. Inf. Model., 1989, 29, 163–172.
References
40 P. Ertl, B. Rohde and P. Selzer, J. Med. Chem., 2000, 43,
714–3717.
3
1
2
3
P. Vadgama, Annu. Rep. Prog. Chem., Sect. C, 2005, 101, 14–52.
C.-S. Ha and J. A. Gardella, Chem. Rev., 2005, 105, 4205–4232.
D. R. Absolom, W. Zingg and A. W. Neumann, J. Biomed. Mater.
Res., 1987, 21, 161–171.
4
1 P. Ertl, in Molecular Drug Properties, ed. R. Mannhold, Wiley-VCH,
Weinheim, 2007, Editon edn, pp. 111–126.
4
2 P. Ferrara, J. Apostolakis and A. Caflisch, Proteins: Struct.,
Funct., Genet., 2002, 46, 24–33.
3 A. Marmur, Soft Matter, 2006, 2, 12–17.
4
5
D. E. E. MacDonald, Biomaterials, 2002, 23, 1269–1279.
E. Moy, F. Y. H. Lin, J. W. Vogtle, Z. Policova and
A. W. Neumann, Colloid Polym. Sci., 1994, 272, 1245–1251.
A. Caro, V. Humblot, C. Methivier, M. Minier, M. Salmain and
C.-M. Pradier, J. Phys. Chem. B, 2009, 113, 2101–2109.
C.-K. Kang and Y.-S. Lee, J. Mater. Sci.: Mater. Med., 2007, 18,
4
4
4
4
4
4 I. Meiron and S. Sam, J. Colloid Interface Sci., 2004, 274, 637–644.
5 D. Y. Y. Kwok, Langmuir, 1997, 13, 2880–2894.
6 T. Yasuda, Langmuir, 1994, 10, 2435–2439.
6
7
8
9
7 R. J. Good and E. D. Kotsidas, J. Colloid Interface Sci., 1978, 66,
3
60–362.
8 Y. Li, J. Q. Pham, K. P. Johnston and P. F. Green, Langmuir,
007, 23, 9785–9793.
9 K. Holmberg, K. Bergstro
J. M. Harris, J. Adhes. Sci. Technol., 1993, 7, 503–517.
0 G. V. Lubarsky, R. H. Davidson and M. R. Bradley, Appl. Surf.
Sci., 2004, 227, 268–274.
1389–1398.
4
4
5
B. G. Keselowsky, D. M. Collard and A. J. Garcia, J. Biomed.
Mater. Res., 2003, 66, 247–259.
Y. Inoue, T. Nakanishi and K. Ishihara, React. Funct. Polym.,
2
¨
m, C. Brink, E. Osterberg, F. Tiberg and
¨
2011, 71, 350–355.
1
1
1
0 D. R. Schmidt, H. Waldeck and W. J. Kao, in Biological Interactions
on Materials Surfaces, ed. D. A. Puleo and R. Bizios, Springer,
Editon edn, 2009, pp. 1–18.
1 S. J. Dilly, M. P. Beecham, S. P. Brown, John. M. Griffin,
A. J. Clark, C. D. Griffin, J. Marshall, Richard. M. Napier,
P. C. Taylor and A. Marsh, Langmuir, 2006, 22, 8144–8150.
2 B. Sun, M. Yi, C. C. Yacoob, H. T. Nguyen and H. Shen, Acta
Biomater., 2012, 8, 1109–1116.
5
5
1 A. S. Hoffman, J. Biomed. Mater. Res., 1986, 20, ix–xi.
2 F. Boury, H. Marchais, J. P. Benoit and J. E. Proust, Biomaterials,
1
997, 18, 125–136.
3 G. Yin, Z. Liu, J. Zhan, F. Ding and N. Yuan, Chem. Eng. J.
Amsterdam, Neth.), 2002, 87, 181–186.
5
(
5
5
4 G. L. Trainor, Expert Opin. Drug Discovery, 2007, 2, 51–64.
5 G. L. Trainor, in Annu. Rep. Med. Chem., 2007, vol. 42,
pp. 489–502.
1
1
1
1
3 V. Beachley and X. Wen, Prog. Polym. Sci., 2010, 35, 868–892.
4 Z. Ma, Z. Mao and C. Gao, Colloids Surf., B, 2007, 60, 137–157.
5 Y. Ikada, Biomaterials, 1994, 15, 725–736.
5
5
6 M. P. Gleeson, J. Med. Chem., 2007, 50, 101–112.
7 P. Ascenzi, A. Bocedi, S. Notari, G. Fanali, R. Fesce and
M. Fasano, Mini-Rev. Med. Chem., 2006, 6, 483–489.
8 J. Ghuman, P. A. Zunszain, I. Petitpas, A. A. Bhattacharya,
M. Otagiri and S. Curry, J. Mol. Biol., 2005, 353, 38–52.
9 P. J. Hajduk, R. Mendoza, A. M. Petros, J. R. Huth, M. Bures,
S. W. Fesik and Y. C. Martin, J. Comput.-Aided Mol. Des., 2003,
6 J. M. Goddard and J. H. Hotchkiss, Prog. Polym. Sci., 2007, 32,
698–725.
5
5
1
1
7 G. Fourche, Polym. Eng. Sci., 1995, 35, 968–975.
8 P. J. Davis, L. Harris, A. Karim, A. L. Thompson, M. Gilpin,
M. G. Moloney, M. J. Pound and C. Thompson, Tetrahedron
Lett., 2011, 52, 1553–1556.
1
7, 93–102.
1
2
2
2
2
9 K. Awenat, P. J. Davis, M. G. Moloney and W. Ebenezer, Chem.
Commun., 2005, 990–992.
0 H. Wang, J.-P. Griffiths, R. G. Egdell, M. G. Moloney and
J. Foord, Langmuir, 2008, 24, 862–868.
1 C. Choong, J.-P. Griffiths, M. G. Moloney, J. Triffitt and
D. Swallow, React. Funct. Polym., 2009, 69, 77–85.
2 J. P. Griffiths, B. Maliha, M. G. Moloney and A. L. Thompson,
Langmuir, 2010, 26, 14142–14153.
3 P. Luksirikul, B. Ballesteros, G. Tobias, M. G. Moloney and
M. L. H. Green, Carbon, 2010, 48, 1912–1917.
6
0 C. M. Stiff, M. Zhong, R. W. Sarver, H. Gao, A. M. Ho,
M. T. Sweeney, G. E. Zurenkod and D. L. Romero, Bioorg.
Med. Chem. Lett., 2007, 17, 5479–5482.
61 C. Ybert and J.-M. d. Meglio, Langmuir, 1998, 14, 471–475.
62 N.-P. Huang, R. Michel, J. Voros, M. Textor, R. Hofer, A. Rossi,
D. L. Elbert, J. A. Hubbell and N. D. Spencer, Langmuir, 2001, 17,
489–498.
63 H. Noh and E. A. Vogler, Biomaterials, 2006, 27, 5780–5793.
64 H. Noh and E. A. Vogler, Biomaterials, 2006, 27, 5801–5812.
65 D. Rana and T. Matsuura, Chem. Rev., 2010, 110, 2448–2471.
66 T. Suzuki, O. Nagae, Y. Kato, H. Nakagawa, K. Fukuhara and
N. Miyata, J. Am. Chem. Soc., 2005, 127, 11720–11726.
67 S. Gester, J. Pietzsch and F. Wuest, J. Labelled Compd. Radiopharm.,
2007, 50, 105–113.
2
2
4 M. G. Moloney, J. Phys. D: Appl. Phys., 2008, 41, 174006.
5 D. Leonard, M. G. Moloney and C. Thompson, Tetrahedron Lett.,
2009, 50, 3499–3502.
26 T. R. Stratton, B. M. Applegate and J. P. Youngblood,
Biomacromolecules, 2011, 12, 50–56.
1
200 New J. Chem., 2012, 36, 1187–1200
This journal is c The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012