Full Paper
[1] D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem. Int. Ed. 2005, 44, 7852–
7872; Angew. Chem. 2005, 117, 8062.
[2] G. A. Somorjai, H. Frei, J. Y. Park, J. Am. Chem. Soc. 2009, 131, 16589–
16605.
[3] J. Roggenbuck, M. Tiemann, J. Am. Chem. Soc. 2005, 127, 1096–1097.
[4] Y. Ding, X. Li, B. Li, H. Wang, P. Wu, Catal. Commun. 2012, 28, 147–151.
[5] Y. Ding, X. Li, H. Pan, P. Wu, Catal. Lett. 2014, 144, 268–277.
[6] B. Kuppan, P. Selvam, Prog. Nat. Sci. 2012, 22, 616–623.
[7] V. Aravindan, Y. L. Cheah, W. F. Mak, G. Wee, B. V. R. Chowdari, S. Madhavi,
ChemPlusChem 2012, 77, 570–575.
[8] Z. Liu, D. Fu, F. Liu, G. Han, C. Liu, Y. Chang, Y. Xiao, M. Li, S. Li, Carbon
2014, 70, 295–307.
[9] M. Hartmann, A. Vinu, G. Chandrasekar, Chem. Mater. 2005, 17, 829–833.
[10] F. B. Su, J. H. Zeng, X. Y. Bao, Y. S. Yu, J. Y. Lee, X. S. Zhao, Chem. Mater.
2005, 17, 3960–3967.
0.3 mL) was added dropwise onto CMK-3 powder (1.0 g). Infiltration
was performed by grinding the mixture under ambient conditions
for 10 min until the powder was homogeneously black. Next, the
mixed powder was placed in a polypropylene bottle and aged in
an oven at 60 °C. After aging for 24 h, the sample was cooled in
ambient atmosphere and transferred into an alumina boat in a
tube-type furnace. Finally, the nickel-incorporated CMK-3 powder
was slowly heated under an H2 flow of 200 mL min–1 at a ramping
rate of 2.7 °C min–1, up to 350 °C. The sample was thermally treated
under the continuous H2 flow at 350 °C for 4 h. For the preparation
of Ni/SBA-15 and Ni/AC catalysts, all procedures were identical to
the synthesis of Ni/CMK-3, except for the use of SBA-15 (1.0 g) and
activated carbon powders (1.0 g) as a catalyst support, respectively.
[11] H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater. 2003,
15, 2107–2111.
[12] D. Lee, J. Lee, J. Kim, H. B. Na, B. Kim, C. H. Shin, J. H. Kwak, A. Dohnalkova,
J. W. Grate, T. Hyeon, H. S. Kim, Adv. Mater. 2005, 17, 2828–2833.
[13] X. Zhao, A. Wnag, J. Yan, G. Sun, L. Sun, T. Zhang, Chem. Mater. 2010, 22,
5463–5473.
[14] R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, Adv. Mater. 2001, 13, 677–681.
[15] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature
2001, 412, 169–172.
[16] J. Lee, J. Kim, T. Hyeon, Adv. Mater. 2006, 18, 2073–2094.
[17] R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999, 103, 7743–7746.
[18] G. S. Chai, S. B. Yoon, J. H. Kim, J. S. Yu, Chem. Commun. 2004, 2766–
2767.
[19] X. Wang, R. Liu, M. M. Waje, Z. Chen, Y. Yan, K. N. Bozhilov, P. Feng, Chem.
Mater. 2007, 19, 2395–2397.
[20] S. J. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337–3341.
[21] M. Sevilla, C. Sanchís, T. Valdés-Solís, E. Morallón, A. B. Fuertes, J. Phys.
Chem. C 2007, 111, 9749–9756.
[22] J. S. Yu, S. Kang, S. B. Yoon, G. Chai, J. Am. Chem. Soc. 2002, 124, 9382–
9383.
[23] J. J. Niu, J. N. Wang, L. Zhang, Y. Shi, J. Phys. Chem. C 2007, 111, 10329–
10335.
General Procedure for the Hydrogenation Reactions of Aceto-
phenones to Alcohols: Ni/CMK-3 catalyst (1.47 mg), NaOH
(2.0 mmol), and 2-butanol (3.0 mL) were mixed and sonicated for
10 min. Next, the acetophenone (1.0 mmol) was added into the
mixture and vigorously stirred at 80 °C for 3 h. After the reaction,
the mixture was cooled to room temperature, and the catalyst was
separated by centrifugation. The separated catalyst was washed
several times with ethanol. Finally, the reaction products were ex-
tracted with dichloromethane and analyzed by GC–MS spectro-
scopy.
Characterization: High-resolution transmission electron micros-
copy (TEM) analysis was performed using a Tecnai TF30 ST and a
Titan Double Cs corrected TEM instrument (Titan cubed G2 60-300).
Energy-dispersive X-ray spectroscopy (EDS) elemental mapping
data were collected using a higher-efficiency detection system (Su-
per-X detector). High-power X-ray powder diffraction (XRD) (Rigaku
D/MAX-2500, 18 kW) was also used for the analysis. N2 sorption
isotherms were measured at 77 K with a Tristar II 3020 surface area
analyser. Before the measurement, the sample was degassed under
an N2 flow at 300 °C for 4 h.
[24] Y. Wan, H. Wang, Q. Zhao, M. Klingstedt, O. Terasaki, D. Zhao, J. Am.
Chem. Soc. 2009, 131, 4541–4550.
[25] H. Y. Wang, Y. Wan, J. Mater. Sci. 2009, 44, 6553–6562.
[26] Y. S. Ahn, K. I. Min, Y. M. Chung, H. K. Rhee, S. H. Joo, R. Ryoo, Stud. Surf.
Sci. Catal. 2001, 135, 313–313.
[27] D. J. Ager, A. H. M. de Vries, J. G. de Vries, Chem. Soc. Rev. 2012, 41,
3340–3380.
[28] H.-F. Zhou, Q.-H. Fan, W.-J. Tang, L.-J. Xu, Y.-M. He, G.-J. Deng, L.-W. Zhao,
L.-Q. Gu, A. S. C. Chan, Adv. Synth. Catal. 2006, 348, 2172–2182.
[29] C. H. Li, Z. X. Yu, K. F. Yao, S. F. Ji, J. Liang, J. Mol. Catal. A 2005, 226, 101–
105.
[30] L. Hao, J. Wang, L. Shen, J. Zhu, B. Ding, X. Zhang, RSC Adv. 2016, 6,
25056–25061.
[31] S. Fang, L. Shen, H. Zheng, Z. Tong, G. Pang, X. Zhang, RSC Adv. 2015, 5,
85256–85263.
[32] A. Berenguer, T. M. Sankaranarayanan, G. Gómez, I. Moreno, J. M. Coro-
nado, P. Pizarroa, D. P. Serrano, Green Chem. 2016, 18, 1938–1951.
[33] H. R. Choi, H. Woo, S. Jang, J. Y. Cheon, C. Kim, J. Park, K. H. Park, S. H.
Joo, ChemCatChem. 2012, 4, 1587–1594.
Acknowledgments
This research was supported by the Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT & Future Planning (NRF-
2015R1D1A1A02060684 and NRF-2013R1A1A2012960). J. C. P.
thanks for the support funded by the Ministry of Trade, Industry
and Energy (MOTIE) of the Republic of Korea through project
no. 10050509. S. P. thanks for partial support by the >cgs>NRF
(2015R1D1A1A01058672) and a Korea Basic Science Institute re-
search grant (E36800).
Keywords: CMK-3 · Nickel · Nanoparticles · Hydrogenation ·
Mesoporous materials · Carbon · Heterogeneous catalysis
Received: March 21, 2016
Published Online: ■
Eur. J. Inorg. Chem. 0000, 0–0
5
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim