C O M M U N I C A T I O N S
containing 1 and EDA initiated consumption of the diazoester.
Similar behavior was observed with all substrates shown in Table
1, as well as with other weak donors such as benzene. A possible
explanation might involve the formation of an active species being
a substrate-containing complex, probably cationic in nature, with
chloride as a counterion.
In conclusion, we have shown that complex IPrCuCl catalyzes
the transfer of the :CHCO2Et group (from ethyl diazoacetate) to
unsaturated and saturated substrates (olefins, amine, alcohols) with
very high yields. The unique behavior of this system constitutes,
in our opinion, the starting point for the development of new
catalysts that avoid the already mentioned main drawback of this
methodology, the diazocompound dimerization reaction.
Acknowledgment. This communication is dedicated to the
memory of Dr. Juan Carlos del Amo Aguado. We thank the MCYT
(Proyecto BQU2002-01114) for financial support and the Univer-
sidad de Huelva for the Servicio de Resonancia Magne´tica Nuclear.
M.R.F. thanks the MCYT for a research studentship. M.M.D.R.
thanks the MCYT for a Ramo´n y Cajal grant. S.P.N. acknowledges
the National Science Foundation for support of the work performed
at UNO.
Figure 1. EDA decomposition in the presence of 1. (1) EDA as the sole
reagent. (2) Styrene added at 3 h. Dibromomethane used as internal
standard.
Table 1. Carbene Transfer from Ethyl Diazoacetate (EDA) Using
1 as the Catalysta
Supporting Information Available: General experimental proce-
dures and NMR spectra of the products in Table 1 (PDF). This material
References
(1) March, J. AdVanced Organic Chemistry: Reactions, Mechanisms, and
Structure, 4th ed.; John Wiley & Sons: New York, 1992.
(2) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds; John Wiley & Sons: New
York, 1998.
(3) Kirmse W. Angew. Chem., Int. Ed. 2003, 42, 1088-1093.
(4) Straub, B. F.; Hofmann, P. Angew. Chem, Int. Ed. 2001, 40, 1288-1290.
(5) (a) Herrmann, W. Angew. Chem., Int. Ed. 2002, 41, 1290-1309. (b)
Bourissou, D.; Guerret, O.; Gabba¨ı, F. P.; Bertrand, G. Chem. ReV. 2000,
100, 39-91. (c) Arduengo, A. J. Acc. Chem Res. 1999, 32, 913-921.
(6) (a) Poyatos, M.; Mas-Marza, E.; Mata, J. A.; Sanau, M.; Peris, E. Eur. J.
Inorg. Chem. 2003, 1215-1221. (b) Bolm, C.; Focken, T.; Raabe, G.
Tetrahedron: Asymmetry 2003, 14, 1733-1746. (c) Albrecht, M.;
Miecznikowski, J. R.; Samuel, A.; Faller, J. W.; Crabtree, R. H. Organo-
metallics 2002, 21, 3596-3604. (d) Powell, M. T.; Hou, D. R.; Perry, M.
C.; Cui, X. H.; Burgess, K. J. Am. Chem. Soc. 2001, 123, 8878-8879.
(7) (a) Kaur, H.; Zinn, F. K.; Stevens, E. D.; Nolan, S. P. Organometallics
2004, 23, 1157-1160. (b) Marko, I. E.; Sterin, S.; Buisine, O.; Mignani,
R.; Branlard, P.; Tinant, B.; Declercq, J. P. Science 2002, 298, 204-207.
(8) (a) Viciu, M. S.; Zinn, F. K.; Stevens, E. D.; Nolan, S. P. Organometallics
2003, 22, 3175-3177. (b) Pytkowicz, J.; Roland, S.; Mangeney, P.; Meyer,
G.; Jutand, A. J. Organomet. Chem. 2003, 678, 166-179. (c) Ma, Y. D.;
Song, C.; Jiang, W.; Wu, Q. S.; Wang, Y.; Liu, X. Y.; Andrus, M. B.
Org. Lett. 2003, 5, 3317-3319. (d) Loch, J. A.; Albrecht, M.; Peris, E.;
Mata, J.; Faller, J. W.; Crabtree, R. H. Organometallics 2002, 21, 700-
706. (e) Clyne, D. S.; Jin, J.; Genest, E.; Gallucci, J. C.; RajanBabu, T.
V. Org. Lett. 2000, 2, 1125-1128.
a Reactions performed at room temperature with 0.025 mmol of 1, 4%
with respect to EDA. b Percentage of the product, based in EDA, determined
by GC after total consumption of EDA with dibromomethane as internal
standard. Diethyl fumarate and maleate accounted for the remaining EDA.
Isolated yields are given in brackets. Average of two runs. c EDA added in
3 portions. d Addition of EDA in 1 portion gave a 10% of the disubstituted
PhN(CH2CO2Et)2. Addition in 2 portions avoided the double activation.e 1
portion addition. f X ) 10. g X ) 6.
leads to initiation of the catalytic cycle and to a species that has
preferred interaction with the diazo reagent yet in the absence of
substrate is inactive toward diazo activation (and degradation).
Therefore, the chemoselectivity in this system appears to be self-
controlled and requires the presence of a substrate in the reaction
mixture, a result that, to our knowledge, finds no precedent in the
metal-mediated catalytic carbene transfer from ethyl diazoacetate.
It is also worth mentioning that reactions were performed with
simultaneous addition of EDA and substrate, without the need for
slow addition techniques, at room temperature, with excess of the
substrate. We have also performed the equimolar EDA/substrate
experiments, with the results shown in Table 1. The olefins were
converted into cyclopropanes with a ca. 70% yield, whereas higher
conversions were observed for amines and alcohols.16 The prefer-
ence for interaction with X-H bonds was further confirmed by a
competition experiment carried out with styrene and aniline yielding
the aniline derivative as the major product (<95%).
(9) Huang, J.; Grasa, G.; Nolan, S. P. Org. Lett. 1999, 1, 1307-1309.
(10) See: Love, J. A.; Sanford, M. S.; Day, M. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 10103-10109 and references therein.
(11) Richel, A.; Delfosse, S.; Cremasco, C.; Delaude, L.; Demonceau, A.;
Noels, A. F. Tetrahedron Lett. 2003, 44, 6011-6015.
(12) (a) Centinkaya, B.; O¨ zdemir, I.; Dixneuf, P. H. J. Organomet. Chem. 1997,
534, 153-158. (b) Grasa, G. A.; Moore, Z.; Martin, K. L.; Stevens, E.
D.; Nolan, S. P.; Paquet, V.; Lebel, H. J. Organomet. Chem. 2002, 658,
126-131.
(13) (a) Jurkauskas, V.; Sadighi, J. P.; Buchwald, S. L. Org. Lett. 2003, 14,
2417-2420. (b) See ref 7a. (c) Mankad, N. P.; Gray, T. G.; Laitar, D. S.;
Sadighi, J. P. Organometallics 2004, 23, 1191-1193.
(14) (a) D´ıaz-Requejo, M. M.; Caballero, A.; Belderrain, T. R.; Nicasio, M.
C.; Trofimenko, S.; Pe´rez, P. J. J. Am. Chem. Soc. 2002, 124, 978-983.
(b) D´ıaz-Requejo, M. M.; Belderrain, T. R.; Trofimenko, S.; Pe´rez, P. J.
J. Am. Chem. Soc. 2001, 123, 3167-3168.
(15) (a) Morilla, M. E.; Molina, M. J.; D´ıaz-Requejo, M. M.; Belderrain, T.
R.; Nicasio, M. C.; Trofimenko, S.; Pe´rez, P. J. Organometallics 2003,
22, 2914-2918. (b) Morilla, M. E.; D´ıaz-Requejo, M. M.; Belderrain, T.
R.; Nicasio, M. C.; Trofimenko, S.; Pe´rez, P. J. Chem. Commun. 2002,
2998-2999.
Although mechanistic studies are currently underway, we believe
that the absence of the reactivity of 1 toward EDA suggests that 1
is not the active catalytic species and that the substrate helps
generate the active species responsible for diazo decomposition.
In fact, the addition of a small amount (nearly stoichiometric
referred to catalyst) of diethyl fumarate or maleate to a solution
(16) A reviewer noted that a copper-based catalyst provided very good yields
for the cyclopropanation reaction using a 1:1.2 ratio of styrene and the
diazoester (BHT derivative). That same catalyst with ethyl diazoacetate
gave a 39% isolated yield. See: Lo, M. M.-C.; Fu, G. C. J. Am. Chem.
Soc. 1998, 120, 10270-10271.
JA047284Y
9
J. AM. CHEM. SOC. VOL. 126, NO. 35, 2004 10847