ChemComm
Page 4 of 5
COMMUNICATION
DOI: 10.1039/C8CC03346C
Journal Name
formylation reactions proceeded smoothly for primary and secondary
aliphatic amines, selectively affording the corresponding formamides
7
8
9
X. Cui, Y. Zhang, Y. Deng and F. Shi, Chem. Commun., 2014, 50, 189-
191.
2
a
~
2n in moderate to excellent yields (48%~97%). Besides 1a, other
cyclic aliphatic amines also performed well, producing the
corresponding formamides 2b 2d in yields higher than 84%. Linearly
aliphatic amines, di-n-propylamine 1e and di-n- hexylamine 1f,
showed good reactivity, affording 70% and 84% yields of 2e and 2f
respectively. The reactivity of N-methylbenzylamine was also good,
with 99% yield of 2g. However, its derivatives with electro-donating 11 Z. Yang, H. Wang, G. Ji, X. Yu, Y. Chen, X. Liu, C. Wu and Z. Liu,
or electro-withdrawing groups (e.g. –Me or -F) showed inferior New J. Chem., 2017, 41, 2869-2872.
reactivities, leading to 71% yield of 2h and 77% yield of 2i. Formylation 12 (a) Y. Zhao, K. X. Yao, B. Teng, T. Zhang and Y. Han, Energy
T. Mitsudome, T. Urayama, S. Fujita, Z. Maeno, T. Mizugaki, K.
Jitsukawa and K. Kaneda, ChemCatChem, 2017,
P. Ju, J. Chen, A. Chen, L. Chen and Y. Yu, ACS Sustainable Chem.
Eng., 2017, , 2516-2528.
10 Y. Zhang, H. Wang, H. Yuan and F. Shi, ACS Sustainable Chem.
Eng., 2017, , 5758-5765.
9, 3632-3636.
~
5
,
5
of primary amines with linear chains gave 2j in 64% yield.
Cyclohexylamine also showed good reactivity, affording 2k in 78%
yield. Formylation of benzylamine performed well, producing 2l in
Environ. Sci., 2013,
Zhao, L.-M. Zhang, A.-D. Qi and B.-H. Han, ACS Macro Lett., 2013,
, 522-526; (c) Z.-Z. Yang, Y. Zhao, H. Zhang, B. Yu, Z. Ma, G. Ji
and Z. Liu, Chem. Commun., 2014, 50, 13910-13913.
donating or electro-withdrawing groups (e.g. –Me or -F) decreased, 13 (a) Z. Dai, Q. Sun, X. Liu, L. Guo, J. Li, S. Pan, C. Bian, L. Wang, X.
6, 3684-3692; (b) D.-P. Liu, Q. Chen, Y.-C.
2
9
2% yield, while the reactivities of its derivatives with electro-
affording moderate yields of 2m (69%) and 2n (48%).
Hu, X. Meng, L. Zhao, F. Deng and F.-S. Xiao, ChemSusChem,
The formylation mechanism of amines with CO2/H2 was explored.
Control experiments showed that HCOOH was formed via the CO2
hydrogenation over Imine-POP@Pd in the absence of amine (Figure
2017, 10, 1186-1192; (b) Q. Chen, M. Luo, P. Hammershøj, D.
Zhou, Y. Han, B. W. Laursen, C.-G. Yan and B.-H. Han, J. Am.
Chem. Soc., 2012, 134, 6084-6087; (c) Q. Song, S. Jiang, T. Hasell,
M. Liu, S. Sun, A. K. Cheetham, E. Sivaniah and A. I. Cooper, Adv.
Mater., 2016, 28, 2629-2637; (d) Y. Zhu, H. Long and W. Zhang,
Chem. Mater., 2013, 25, 1630-1635; (e) H. A. Patel, S. Hyun Je, J.
Park, D. P. Chen, Y. Jung, C. T. Yavuz and A. Coskun, Nat.
S11, ESI), which could further react with amine to form 2a in a yield of
5
3% (Scheme S1, ESI). Based on previous reports and results
9
obtained in this work, it was deduced that the N-formylation product
was obtained via the Imine-POP@Pd-catalyzed CO hydrogenation
to HCOOH and the subsequent reaction of HCOOH with amine
2
Commun., 2013, 4, 1357.
(
Scheme S2, ESI).
14 (a) X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez and B.-L.
In summary, mesoporous imine-functionalized POP was
Su, Chem. Soc. Rev., 2017, 46, 481-558; (b) W. Wang, M. Zhou and
synthesized in water without any catalyst or template. The integration
of imine group gave the polymer strong coordination ability with the
Pd species, and the resultant Pd metalated material exhibited good
D. Yuan, J. Mater. Chem. A, 2017,
5, 1334-1347; (c) L. Tan and B.
Tan, Chem. Soc. Rev., 2017, 46, 3322-3356; (d) N. Chaoui, M.
Trunk, R. Dawson, J. Schmidt and A. Thomas, Chem. Soc. Rev.
2017, 46, 3302-3321.
,
,
2 2
catalytic performance for the N-formylation of amines with CO /H at
relatively low temperature, together with high stability and easy 15 Q. Sun, Z. Dai, X. Meng and F.-S. Xiao, Chem. Soc. Rev., 2015, 44
recyclability. 6018-6034.
We thank the National Natural Science Foundation of China (No. 16 M.-H. Sun, S.-Z. Huang, L.-H. Chen, Y. Li, X.-Y. Yang, Z.-Y. Yuan
2
1673256, 21533011), and the Chinese Academy of Sciences (QYZDY-
and B.-L. Su, Chem. Soc. Rev., 2016, 45, 3479-3563.
SSW-SLH013-2) for the financial supports.
17 J. Zhang, Z.-A. Qiao, S. M. Mahurin, X. Jiang, S.-H. Chai, H. Lu, K.
Nelson and S. Dai, Angew. Chem. Int. Ed., 2015, 54, 4582-4586.
Notes and references
18 P. Zhang, Z.-A. Qiao, X. Jiang, G. M. Veith and S. Dai, Nano Lett.
,
2
015, 15, 823-828.
1
(a) J. C. Abanades, E. S. Rubin, M. Mazzotti and H. J. Herzog, Energy
Environ. Sci. 2017, 10 2491-2499; (b) J. Klankermayer, S.
Wesselbaum, K. Beydoun and W. Leitner, Angew. Chem. Int. Ed.
016, 55, 7296-7343; (c) T. Sakakura, J.-C. Choi and H. Yasuda,
Chem. Rev., 2007, 107, 2365-2387; (d) Q. Liu, L. Wu, R. Jackstell
and M. Beller, Nat. Commun., 2015, , 5933.
A. Tlili, E. Blondiaux, X. Frogneux and T. Cantat, Green Chem., 2015,
, 157-168.
P. Haynes, L. H. Slaugh and J. F. Kohnle, Tetrahedron Lett., 1970, 11
65-368.
1
2
2
2
9
0
1
2
Q. Sun, Z. Dai, X. Liu, N. Sheng, F. Deng, X. Meng and F.-S. Xiao, J.
Am. Chem. Soc., 2015, 137, 5204-5209.
,
,
,
X. Yu, Z. Yang, H. Zhang, B. Yu, Y. Zhao, Z. Liu, G. Ji and Z. Liu,
Chem. Commun., 2017, 53, 5962-5965.
2
G. Ji, Z. Yang, H. Zhang, Y. Zhao, B. Yu, Z. Ma and Z. Liu, Angew.
Chem. Int. Ed., 2016, 55, 9685-9689.
6
2
3
4
5
6
S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su and W.
Wang, J. Am. Chem. Soc., 2011, 133, 19816-19822.
1
7
,
2
2
3
4
Q. Qian, J. Zhang, M. Cui and B. Han, Nat Commun, 2016,
L. Zhai, N. Huang, H. Xu, Q. Chen and D. Jiang, Chem. Commun.
017, 53, 4242-4245.
7, 11481.
3
,
L. Zhang, Z. Han, X. Zhao, Z. Wang and K. Ding, Angew. Chem. Int.
Ed., 2015, 54, 6186-6189.
2
P. Daw, S. Chakraborty, G. Leitus, Y. Diskin-Posner, Y. Ben-David
and D. Milstein, ACS Catal., 2017, 2500-2504.
(a) H. Liu, Q. Mei, Q. Xu, J. Song, H. Liu and B. Han, Green Chem.
,
,
2
6
017, 19, 196-201; (b) S. Kumar and S. L. Jain, RSC Adv., 2014, 4
4277-64279.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012