Journal of Materials Chemistry C
Communication
with bright PL emission was obtained by mixing as-prepared References
CsPbBr3 nanoribbons solution with PbX2 (X = Cl and I) hexane
1 Q. A. Akkerman, G. Raino, M. V. Kovalenko and L. Manna,
Nat. Mater., 2018, 17, 394–405.
2 M. Cao, Y. Xu, P. Li, Q. Zhong, D. Yang and Q. Zhang,
J. Mater. Chem. C, 2019, DOI: 10.1039/C9TC03978C.
3 M. V. Kovalenko, L. Protesescu and M. I. Bodnarchuk,
Science, 2017, 358, 745–750.
4 N. Pradhan, J. Phys. Chem. Lett., 2019, 10, 5847–5855.
5 J. Shamsi, A. S. Urban, M. Imran, L. De Trizio and L. Manna,
Chem. Rev., 2019, 119, 3296–3348.
6 D. Yang, M. Cao, Q. Zhong, P. Li, X. Zhang and Q. Zhang,
J. Mater. Chem. C, 2019, 7, 757–789.
7 Q. Zhang and Y. Yin, ACS Cent. Sci., 2018, 4, 668–679.
8 K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu,
L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu,
J. Kirman, E. H. Sargent, Q. Xiong and Z. Wei, Nature, 2018,
562, 245–248.
solution. The PL emission spectra of CsPbX3 nanoribbons could
be tuned from 395 nm to 590 nm while maintaining narrow line
widths of 10–35 nm from CsPbCl3 to CsPbI3 (Fig. 5b). The
absorption spectra were varied from 370 nm to 580 nm with
sharp peaks (Fig. S10, ESI†). It was obviously observed that a
strong quantum confinement effect was still existed for all
samples. The PL peak of CsPbCl3 located at 395 nm, which
blue-shifted about 15 nm compared to nanocubes (B410 nm).
In addition, the PL emission peak of CsPbI3 nanoribbons was
significantly blue shifted (110 nm) compare to the CsPbI3
nanocubes (B700 nm). Such large blue-shift in CsPbCl3 and
CsPbI3 nanoribbons indicated the well-persevered morphology
of nanoribbons, which was further confirmed by the TEM
characterization (Fig. S11, ESI†).
9 Z. Shi, S. Li, Y. Li, H. Ji, X. Li, D. Wu, T. Xu, Y. Chen, Y. Tian,
Y. Zhang, C. Shan and G. Du, ACS Nano, 2018, 12,
1462–1472.
Conclusions
In conclusion, we reported a solvothermal approach to synthe-
size CsPbX3 nanocrystals with precisely controlled dimensions 10 Z. Shi, Y. Li, Y. Zhang, Y. Chen, X. Li, D. Wu, T. Xu, C. Shan
and high uniformity. By simply controlling the concentration of
and G. Du, Nano Lett., 2017, 17, 313–321.
precursors, the morphologies of CsPbX3 nanocrystals, including 11 J. Song, T. Fang, J. Li, L. Xu, F. Zhang, B. Han, Q. Shan and
3D nanocubes, 2D nanoplatelets/nanoribbons and 1D nanorods,
could be well tuned. The 2D and 1D nanostructures showed a 12 F. Zhang, Z. F. Shi, Z. Z. Ma, Y. Li, S. Li, D. Wu, T. T. Xu,
H. Zeng, Adv. Mater., 2018, 30, e1805409.
strong quantum confinement effect with a blue-shift in their PL
emission and absorbance, which could create opportunities for
applications in various fields. By using a combination of XPS and
EDX characterizations, a plausible stoichiometry defined growth
mechanism has been proposed. It is believed that the octyl-
ammonium ions would replace the Cs cations on the crystal
surface, which limited the growth of vertical dimensions, leading
to the formation of low-dimensional nanocrystals. Our approach
not only added another effective tool in the toolbox for the
synthesis of high-quality CsPbX3 nanocrystals, but also provided
a new perspective to control the dimension of CsPbX3 nano-
crystals, which might be extended to other materials, such as hybrid
lead halide perovskite and lead-free perovskite nanocrystals.
X. J. Li, C. X. Shan and G. T. Du, Nanoscale, 2018, 10,
20131–20139.
13 A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik,
D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther,
Science, 2016, 354, 92–95.
14 H. Bian, D. Bai, Z. Jin, K. Wang, L. Liang, H. Wang, J. Zhang,
Q. Wang and S. Liu, Joule, 2018, 2, 1500–1510.
15 Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng and H. Sun, Adv.
Mater., 2015, 27, 7101–7108.
16 Y. Wang, X. Li, V. Nalla, H. Zeng and H. Sun, Adv. Funct.
Mater., 2017, 27, 1605088.
17 Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang,
Y. Leng and R. Li, ACS Nano, 2018, 12, 5923–5931.
18 C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang
and F. Gao, Adv. Mater., 2018, 30, e1803422.
Conflicts of interest
19 P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee and
J. S. Lee, Chem. Commun., 2016, 52, 2067–2070.
20 Z. Yang, M. Wang, H. Qiu, X. Yao, X. Lao, S. Xu, Z. Lin,
L. Sun and J. Shao, Adv. Funct. Mater., 2018, 28, 1705908.
21 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo,
C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nano
Lett., 2015, 15, 3692–3696.
22 Y. Tong, B. J. Bohn, E. Bladt, K. Wang, P. Muller-Buschbaum,
S. Bals, A. S. Urban, L. Polavarapu and J. Feldmann, Angew.
Chem., Int. Ed., 2017, 56, 13887–13892.
23 Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov,
X. Guan, S. Han, L. Liang, Z. Yi, J. Li, X. Xie, Y. Wang, Y. Li,
D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr,
T. Wu, M. Bettinelli, H. Yang, W. Huang and X. Liu, Nature,
2018, 561, 88–93.
There are no conflicts to declare.
Acknowledgements
This work is supported by the National Natural Science Foun-
dation of China (21673150, 21703146, 51802206, 51922073),
Natural Science Foundation of Jiangsu Province (BK20180097,
BK20180846). We acknowledge the financial support from the
111 Project, Collaborative Innovation Center of Suzhou Nano
Science and Technology (NANO-CIC), the Priority Academic
Program Development of Jiangsu Higher Education Institutions
(PAPD), and Postgraduate Research & Practice Innovation Program
of Jiangsu Province (KYCX19-1920).
This journal is ©The Royal Society of Chemistry 2019
J. Mater. Chem. C, 2019, 7, 14493--14498 | 14497