Angewandte Chemie International Edition
10.1002/anie.201911530
COMMUNICATION
levels (Figure S21). Similar phenomenon was observed in other Acknowledgements
[
4a]
quinoidal compounds, and the actual reason for the absence
of hole transport is unclear. Representative output and transfer
curves for the devices are shown in Figures 4, S19 and S20,
and their performance parameters are summarized in Table S6.
All the transfer and output characteristics showed negligible
hysteresis between forward and reverse sweeps, indicating low
This work was supported by the National Natural Science
Foundation of China (no. 21774093) and the National Key R&D
Program of “Strategic Advanced Electronic Materials” (no.
2016YFB0401100) of the Chinese Ministry of Science and
Technology. The DFT calculations by Dr. Yanfeng Dang was
deeply appreciated.
[
16]
trap density levels for electron transport.
electron mobilities (μ ) of 5c, 5e and 5f were 0.032, 0.0041 and
.28 cm V s , respectively. Fluorination of the terminal phenyl
groups enhanced the device performance and the μ of 5i
s . In contrast, 5h, 5j and 5k showed
The saturation
e
2
−1 −1
0
Keywords: Indandione • quinoidal compound • aromatic
dialdehydes • electron transport • organic thin-film transistor
e
2
−1
−1
reached 0.38 cm
V
2
inferior device performances with μ
V
e
of 0.13, 0.16 and 0.15 cm
s , respectively. The reliability factors (r) of the mobility
values were calculated according to the method proposed by
−
1
−1
[1]
a) J. Casado, R. Ponce Ortiz, J. T. López Navarrete, Chem. Soc. Rev.
012, 41, 5672; b) K. Kawabata, I. Osaka, M. Sawamoto, J. L. Zafra, P.
Mayorga Burrezo, J. Casado, K. Takimiya, Chem. Eur. J. 2017, 23,
579; c) Y. Deng, B. Sun, Y. He, J. Quinn, C. Guo, Y. Li, Angew. Chem.
2
[
17]
Choi,
which are 67%, 76%, 80%, 86%, 81%, 82% and 73%
4
for 5c, 5e, 5f, 5h, 5i, 5j and 5k, respectively (Table S6).
Additionally, the device performance data in linear regime are
summarized in Table S6. The saturation and linear mobility
values were very close for these compounds. To evaluate the
device stability, electrical characteristics of 5i-based devices
were measured after storage for 30 days under ambient
conditions (Figure S22). The devices still operated effectively
Int. Ed. 2016, 55, 3459; Angew. Chem. 2016, 128, 3520-3523; d) Y.
Sun, Y. Guo, Y. Liu, Mater. Sci. Eng., R 2019, 136, 13.
[2]
a) S. Ray, S. Sharma, U. Salzner, S. Patil, J. Phys. Chem. C 2017, 121,
16088; b) Z. Zeng, X. Shi, C. Chi, J. T. López Navarrete, J. Casado, J.
Wu, Chem. Soc. Rev. 2015, 44, 6578.
[
3]
a) K. Takimiya, K. Kawabata, J. Synth. Org. Chem Jpn. 2018, 76, 1176;
b) Y. Suzuki, E. Miyazaki, K. Takimiya, J. Am. Chem. Soc. 2010, 132,
1
0453; c) J. Li, X. Qiao, Y. Xiong, H. Li, D. Zhu, Chem. Mater. 2014, 26,
782; d) H. Wu, Y. Wang, X. Qiao, D. Wang, X. Yang, H. Li, Chem.
2
−1 −1
with a μ
e
of 0.11 cm
V
s . Given that 5i contains bulky 4-
5
hexylphenyl side chains, which are detrimental to molecular
packing, further engineering of the side chains can be expected
to improve the electron mobility of the present quinoidal
Mater. 2018, 30, 6992.
[4]
[5]
a) Y. Suzuki, M. Shimawaki, E. Miyazaki, I. Osaka, K. Takimiya, Chem.
Mater. 2011, 23, 795; b) T. Takeda, T. Akutagawa, J. Org. Chem. 2015,
80, 2455; c) G. E. Rudebusch, A. G. Fix, H. A. Henthorn, C. L.
Vonnegut, L. N. Zakharov, M. M. Haley, Chem. Sci. 2014, 5, 3627; d) X.
Shi, S. Lee, M. Son, B. Zheng, J. Chang, L. Jing, K.-W. Huang, D. Kim,
C. Chi, Chem. Commun. 2015, 51, 13178.
[
18]
compounds.
VGS = 0 V to 80 V
-3
VDS = 80 V 0.018
VDS = 20 V
0.015
(
a)
10 (b)
0.20
0.15
0.10
0.05
0.00
VG = 10 V
-
4
80 V
a) A. Ishii, Y. Horikawa, I. Takaki, J. Shibata, J. Nakayama, M. Hoshino,
Tetrahedron Lett. 1991, 32, 4313; b) H. Hwang, D. Khim, J.-M. Yun, E.
Jung, S.-Y. Jang, Y. H. Jang, Y.-Y. Noh, D.-Y. Kim, Adv. Funct. Mater.
2015, 25, 1146; c) S. Kawata, Y.-J. Pu, A. Saito, Y. Kurashige, T.
Beppu, H. Katagiri, M. Hada, J. Kido, Adv. Mater. 2016, 28, 1585; d) L.
Ren, H. Fan, D. Huang, D. Yuan, C.-a. Di, X. Zhu, Chem. Eur. J. 2016,
1
1
1
1
1
0
0
0
0
0
-5
0.012
-6
-7
-8
-9
0.009
0.006
0.003
0.000
22, 17136; e) J. Huang, S. Lu, P.-A. Chen, K. Wang, Y. Hu, Y. Liang, M.
Wang, E. Reichmanis, Macromolecules 2019, 52, 4749; f) Y. Deng, K.
Guo, B. Wu, Y. Jiang, Z. Wang, Z. Liang, Y. Li, Y. Geng, J. Mater.
Chem. C 2019,7.10353; g) T. Kawase, N. Ueno, M. Oda, Tetrahedron
Lett. 1992, 33, 5405; h) Y. Kim, H. Hwang, N.-K. Kim, K. Hwang, J.-J.
Park, G.-I. Shin, D.-Y. Kim, Adv. Mater. 2018, 30, 1706557; i) D. T.
Chase, B. D. Rose, S. P. McClintock, L. N. Zakharov, M. M. Haley,
Angew. Chem. Int. Ed. 2011, 50, 1127; Angew. Chem. 2011, 123,
10
0
20 40 60 80
(V)
0
20 40 60 80
VGS (V)
V
DS
Figure 4. Output (a) and transfer (b) characteristics of the TGBC OTFT
devices based on 5i.
1159-1162.
[
[
6]
7]
J. Casado, Top. Curr. Chem. 2017, 375, 73.
a) S. Shapiro, K. Geiger, J. Youlus, L. Freedman, J. Org. Chem. 1961,
26, 3580; b) S. L. Shapiro, K. Geiger, L. Freedman, J. Org. Chem. 1960,
In conclusion, we have demonstrated a facile method for the
synthesis of 1,3-indandione-terminated quinoidal compounds
from readily accessible aryl dialdehydes and phthalide
derivatives. This new approach allows the access of termini- and
core-tunable quinoidal compounds and the feasible regulation of
their optoelectronic properties via central core and termini
engineering. These termini functionalized quinoids can also be
used as building blocks for novel conjugated systems.
Furthermore, OTFTs based on these compounds exhibited n-
channel characteristics with the highest electron mobility of up to
2
5, 1860; c) R. L. Horton, K. C. Murdock, J. Org. Chem. 1960, 25, 938.
[
[
8]
9]
a) T. M. Pappenfus, A. J. Helmin, W. D. Wilcox, S. M. Severson, D. E.
Janzen, J. Org. Chem. 2019, 84, 11253; b) X. Shi, W. Kueh, B. Zheng,
K.-W. Huang, C. Chi, Angew. Chem. Int. Ed. 2015, 54, 14412; Angew.
Chem. 2015, 127, 14620-14624.
J. Casado, M. Z. Zgierski, P. C. Ewbank, M. W. Burand, D. E. Janzen,
K. R. Mann, T. M. Pappenfus, A. Berlin, E. Pérez-Inestrosa, R. P. Ortiz,
J. T. López Navarrete, J. Am. Chem. Soc. 2006, 128, 10134.
[10] Y. Deng, Y. Chen, J. Liu, L. Liu, H. Tian, Z. Xie, Y. Geng, F. Wang,
ACS Appl. Mater. Interfaces 2013, 5, 5741.
2
−1
−1
[11] a) K. Tomoya, M. Eigo, T. Kazuo, Chem. Lett. 2009, 38, 568; b) H.
Jiang, K. Oniwa, Z. Xu, M. Bao, Y. Yamamoto, T. Jin, Bull. Chem. Soc.
Jpn. 2017, 90, 789.
0.38 cm
V
s . This study not only demonstrates a new
protocol for the synthesis of quinoidal compounds but also
provides a new class of organic semiconductors and new
building blocks for organic semiconductors.
[
12] a) Q. Wu, R. Li, W. Hong, H. Li, X. Gao, D. Zhu, Chem. Mater. 2011, 23,
3138; b) J. Cornil, D. Beljonne, J. P. Calbert, J. L. Brédas, Adv. Mater.
2001, 13, 1053.
This article is protected by copyright. All rights reserved.