S. Khoee, R. Rahmatolahzadeh / European Journal of Medicinal Chemistry 50 (2012) 416e427
427
and therapy at the same time, has an excellent potential for the
simultaneous diagnosis and therapy of cancer. Degradation studies
of the copolymer were performed in buffers with varied pH values.
SEM images of degraded copolymeric nanoparticles proved the
degradation and suggested that surface erosion was occurred in
acidic media, while, bulk erosion was observed after incubation of
nanoparticles in PBS buffer at pH 7.4.
[18] J.F. Ross, P.K. Chaudhuri, M. Ratnam, Differential regulation of folate receptor
isoforms in normal and malignant tissues in vivo and in established cell lines.
Physiologic and clinical implications, Cancer 73 (1994) 2432e2443.
[
[
[
[
19] G. Russell-Jones, K. McTavish, J. McEwan, J. Rice, D. Nowotnik, Vitamin-
mediated targeting as a potential mechanism to increase drug uptake by
tumours, J. Inorg. Biochem. 98 (2004) 1625e1633.
20] H. Li, Y. Lu, L. Piao, J. Wu, X. Yang, S.V. Kondadasula, W.E. Carson, R.J. Lee,
Folate-immunoglobulin G as an anticancer therapeutic antibody, Bioconjug.
Chem. 21 (2010) 961e968.
21] D.S.W. Benoit, S. Srinivasan, A.D. Shubin, P.S. Stayton, Synthesis of folate-
functionalized RAFT polymers for targeted siRNA delivery, Bio-
macromolecules 12 (2011) 2708e2714.
22] S.Q. Liu, Y.W. Tong, Y.Y. Yang, Incorporation and in vitro release of doxoru-
bicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-
References
[
1] L.E. Vlerken, M.M. Amiji, Multi-functional polymeric nanoparticles for
tumour-targeted drug delivery, Expert Opin. Drug Deliv. 3 (2006) 205e216.
2] N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, S.F. Chin, A.D. Sherry,
D.A. Boothman, J. Gao, Multifunctional polymeric micelles as cancer-targeted,
MRI-ultrasensitive drug delivery systems, Nano Letters 6 (2006) 2427e2430.
3] C. Sun, R. Sze, M. Zhang, Folic acid-PEG conjugated superparamagnetic
nanoparticles for targeted cellular uptake and detection by MRI, J. Biomed.
Mater. Res. 78A (2006) 550e557.
co-N,N-dimethylacrylamide)-b-poly(
compositions, Biomaterials 26 (2005) 5064e5074.
23] E.S. Lee, H.J. Shin, K. Na, Y.H. Bae, Poly( -histidine)-PEG block copolymer
micelles and pH-induced destabilization, J. Control Release 90 (2003)
63e374.
24] M. Soleimani, J.C. Haley, D. Majonis, G. Guerin, W. Lau, M.A. Winnik, Smart
polymer nanoparticles designed for environmentally compliant coatings,
J. Am. Chem. Soc. 133 (2011) 11299e11307.
25] L. Fan, F. Li, H. Zhang, Y. Wang, C. Cheng, X. Li, C. Gu, Q. Yang, H. Wu, S. Zhang,
Co-delivery of PDTC and doxorubicin by multifunctional micellar nano-
particles to achieve active targeted drug delivery and overcome multidrug
resistance, Biomaterials 31 (2010) 5634e5642.
D, L-lactide-co-glycolide) with varying
[
[
[
[
L
3
[
[
4] M. Prabaharan, J.J. Grailer, S. Pilla, D.A. Steeber, S. Gong, Folate-conjugated
amphiphilic hyperbranched block copolymers based on Boltorn (R) H40,
poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery,
Biomaterials 30 (2009) 3009e3019.
[5] J. Hu, S. Liu, Responsive polymers for detection and sensing applications:
current status and future developments, Macromolecules 43 (2010)
[
[
[
[
26] J. Li, W.J. Kao, Synthesis of polyethylene glycol (PEG) derivatives and
PEGylated-peptide biopolymer conjugates, Biomacromolecules
055e1067.
27] J. Mohammadi-Rovshandeh, M.N. Sarbolouki, Synthesis and in-vitro hydro-
lytic degradation of polyglycolide and its -lactide copolymer, Iran. Polym. J.
0 (2001) 53e58.
4 (2003)
8315e8330.
1
[
6] M. Wilhelm, C. Zhao, Y. Wang, R. Xu, M.A. Winnik, J. Mura, G. Riess,
M.D. Croucher, Poly(styrene-ethylene oxide) block copolymer micelle
formation in water: a fluorescence probe study, Macromolecules 24 (1991)
L
1
1033e1040.
28] C.W. Park, S.J. Lee, D. Kim, D.S. Lee, S.C. Kim, Micelle formation and solegel
transition behavior of comb-like amphiphilic poly((PLGA-b-PEG)MA) copol-
ymers, J. Polym. Sci. Polym. Chem. 46 (2008) 1954e1963.
29] T. Reschel, C. Konak, D. Oupicky, L.W. Seymour, K. Ulbrich, Physical properties
and in vitro transfection efficiency of gene delivery vectors based on
complexes of DNA with synthetic polycations, J. Control Release 81 (2002)
[7] P.S. Low, A.C. Antony, Folate receptor-targeted drugs for cancer and inflam-
matory diseases, Adv. Drug Deliv. Rev. 56 (2004) 1055e1058.
[
8] S. Khoee, S. Hassanzadeh, B. Goliaie, Effects of hydrophobic drugepolyesteric
core interactions on drug loading and release properties of poly(ethylene
glycol) polyester poly(ethylene glycol) triblock core shell nanoparticles,
Nanotechnology 18 (2007) 175602.
201e217.
[
9] S. Khoee, M.T. Hossainzadeh, Effect of O/S/W process parameters on 17
loaded nanoparticles properties, Colloids Surf. Biointerfaces 75 (2010)
33e140.
b-EV
[
[
[
[
[
30] D. Dube, M. Francis, J.C. Leroux, F.M. Winnik, Preparation and tumor cell
B
uptake of poly(N-isopropylacrylamide) folate conjugates, Bioconjug. Chem. 13
1
(2002) 685e692.
[
10] S. Khoee, H.B. Rahimi, Intermolecular interaction and morphology investiga-
tion of drug loaded ABA-triblock copolymers with different hydrophilic/
lipophilic ratios, Bioorg. Med. Chem. 18 (2010) 7283e7290.
31] T. Higuchi, Mechanism of sustained-action medication. Theoretical analysis of
rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci. 52
(1963) 1145e1149.
[11] T.M. Allen, Ligand-targeted therapeutics in anticancer therapy, Nat. Rev.
Cancer 2 (2002) 750e763.
32] R.W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N.A. Peppas, Mechanisms of
solute release from porous hydrophilic polymers, Int. J. Pharm. 15 (1983)
[
12] K. Pal, S. Pore, S. Sinha, R. Janardhanan, D. Mukhopadhyay, R. Banerjee,
Structure-activity study to develop cationic lipid-conjugated haloperidol
derivatives as a new class of anticancer therapeutics, J. Med. Chem. 54 (2011)
25e35.
33] J. Siepmann, N.A. Peppas, Modeling of drug release from delivery systems
based on hydroxypropyl methylcellulose (HPMC), Adv. Drug Deliv. Rev. 48
2378e2390.
(
2001) 139e157.
34] F. Unger, M. Wittmar, F. Morell, T. Kissel, Branched polyesters based on poly
vinyl-3-(dialkylamino) alkylcarbamate-co-vinyl acetate-co-vinyl alcohol-
graft-poly(
-lactide-co-glycolide): effects of polymer structure on in vitro
[
[
[
[
[
13] S. Wang, E.E. Dormidontova, Nanoparticle design optimization for enhanced
targeting: Monte Carlo simulations, Biomacromolecules 11 (2010)
[
1785e1795.
D,L
14] N. Nasongkla, X. Shuai, H. Ai, B.D. Weinberg, J. Pink, D.A. Boothman, J. Gao,
cRGD-functionalized polymer micelles for targeted doxorubicin delivery,
Angew. Chem. Int. Ed. 43 (2004) 6323e6327.
15] P.A. Bertin, J.M. Gibbs, C.K.F. Shen, C.S. Thaxton, W.A. Russin, C.A. Mirkin,
S.T. Nguyen, Multifunctional polymeric nanoparticles from diverse bioactive
agents, J. Am. Chem. Soc. 128 (2006) 4168e4169.
16] V.P. Torchilin, A.N. Lukyanov, Z.G. Gao, B. Papahadjopoulos-Sternberg,
Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs,
Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 6039e6044.
17] V.A. Sethurame, Y.H. Bae, TAT peptide-based micelle system for potential
active targeting of anti-cancer agents to acidic solid tumors, J. Control Release
degradation behavior, Biomaterials 29 (2008) 2007e2014.
[
[
35] A. Gopferich, Mechanisms of polymer degradation and erosion, Biomaterials
17 (1996) 103e114.
36] X.S. Wu, N. Wang, Synthesis, characterization, biodegradation, and drug
delivery application of biodegradable lactic/glycolic acid polymers. Part II.
Biodegradation, J. Biomater. Sci. Polym. Ed. 12 (2001) 21e34.
[
37] Y. Liu, J. Nguyen, T. Steele, O. Merkel, T. Kissel, A new synthesis method
and degradation of hyper-branched polyethylenimine grafted poly-
caprolactone block mono-methoxyl poly (ethylene glycol) copolymers (hy-
PEI-g-PCL-b-mPEG) as potential DNA delivery vectors, Polymer 50 (2009)
3895e3904.
118 (2007) 216e224.