2
50
european journal of pharmaceutical sciences 3 3 ( 2 0 0 8 ) 241–251
Fig. 12 – Erythrocyte aggregation by different polyplexes. Haemaglutination is expressed as the highest polymer
concentration at which aggregation was not observed (n = 2).
ethylenimine)s designed for triggered intracellular gene
delivery. Bioconjug. Chem. 17, 1233–1240.
4
.
Conclusion
Corona, G., Giannini, F., Fabris, M., Toffoli, G., Boiocchi, M., 1998.
Role of folate receptor and reduced folate carrier in the
transport of 5-methyltetrahydrofolic acid in human ovarian
carcinoma cells. Int. J. Cancer 75, 125–133.
Curiel, D.T., Agarwal, S., Wagner, E., Cotten, M., 1991. Adenovirus
enhancement of transferrin-polylysine-mediated gene
delivery. Proc. Natl. Acad. Sci. U.S.A. 88, 8850–8854.
Dash, P.R., Read, M.L., Barrett, L.B., Wolfert, M.A., Seymour, L.W.,
1999. Factors affecting blood clearance and in vivo
distribution of polyelectrolyte complexes for gene delivery.
Gene Ther. 6, 643–650.
We synthesized a new cationic co-polymer polyphosphazene
with pendant primary and tertiary amine side groups. Poly-
plexes based on this polymer could be post-PEGylation with
PEG and PEG-folate, leading to almost neutral nanoparticles.
We showed that the transfection activity of PEG-folate poly-
plexes was folate receptor-specific. Erythrocyte aggregation
was suppressed when the polyplexes were PEGylated. Future
work will focus on in vivo application of this new polymer.
de Wolf, H.K., Luten, J., Snel, C.J., Ousorren, C., Hennink, W.E.,
Storm, G., 2005. In vivo tumour transfection mediated by
polyplexes based on biodegradable
r e f e r e n c e s
poly(DMAEA)-phosphazene. J. Control. Rel. 109, 275–287.
de Wolf, H.K., de Raad, M., Snel, C., van Steenbergen, M.J., Fens,
M.H.A.M., Storm, G., Hennink, W.E., 2007a. Biodegradable
poly(2-dimethylamino ethylamino)phosphazene for in vivo
gene delivery to tumor cells. Effect of polymer molecular
weight. Pharm. Res. 24, 1572–1580.
Antony, A.C., 1996. Folate receptors. Annu. Rev. Nutr. 16, 501–521.
Asayama, S., Maruyama, A., Cho, C.S., Akaike, T., 1997. Design of
comb-type polyamine copolymers for novel pH-sensitive DNA
carrier. Bioconjug. Chem. 8, 833–838.
Atwell, G.J., Denny, W.A., 1984. Monoprotection of
␣
,-alkanediamines with the N-benzyloxycarbonyl group.
de Wolf, H.K., Snel, C.J., Verbaan, F.J., Schiffelers, R.M., Hennink,
W.E., Storm, G., 2007b. Effect of cationic carriers on the
pharmacokinetics and tumour localization of nucleic acids
after intravenous administration. Int. J. Pharm. 331, 167–175.
Elnakat, H., Ratnam, M., 2004. Distribution, functionality and
gene regulation of folate receptor isoforms: implications in
targeted therapy. Adv. Drug Deliv. Rev. 56, 1067–1084.
Erbacher, P., Bettinger, T., Belguise-Valladier, P., Zou, S., Coll, J.-L.,
Behr, J.-P., Remy, J.-S., 1999. Transfection and physical
properties of various saccharide, poly(ethylene glycol), and
antibody-derivatized polyethylenimines (PEI). J. Gene Med. 1,
210–222.
Synthesis, 1032–1033.
Biagbrough, S., Moya, E., Walford, S.P., 1996. Practical, convergent
total synthesis of polyamine amide spider toxin NSTX-3.
Tetrahedron Lett. 37, 551–554.
Blessing, T., Kursa, M., Holzhauser, R., Kircheis, R., Wagner, E.,
2001. Different strategies for formation of PEGylated
EGF-conjugated PEI/DNA complexes for targeted gene
delivery. Bioconjug. Chem. 12, 529–537.
Boussif, O., Lezoulac’h, F., Zanta, M., Mergny, M., Scherman, D.,
Demeneix, B., Behr, J.P., 1995. A versatile vector for gene and
oligonucleotide transfer into cells in culture and in vivo:
polyethylenimine. Proc. Natl. Acad. Sci. U.S.A. 92, 7297–7301.
Byrnes, A.P., Rusby, J.E., Wood, M.J., Charlton, H.M., 1995.
Adenovirus gene transfer causes inflammation in the brain.
Neuroscience 66, 1015–1024.
Felgner, P.L., Rhodes, G., 1991. Gene therapeutics. Nature 349,
351–352.
Gorecki, D.C., 2001. Prospects and problems of gene therapy: an
update. Expert Opin. Emerg. Drugs 6, 187–198.
Cherng, J.Y., van de Wetering, P., Talsma, H., Crommelin, D.J.A.,
Hennink, W.E., 1996. Effect of size and serum proteins on
transfection efficiency of poly((2-dimethylamino)ethyl
methacrylate)-plasmid nanoparticles. Pharm. Res. 13,
Guo, S., Huang, F., Guo, P., 2006. Construction of folate-conjugated
pRNA of bacteriophage phi29 DNA packaging motor for
delivery of chimeric siRNA to nasopharyngeal carcinoma
cells. Gene Ther. 13, 814–820.
1
038–1042.
Jiang, X., van der Horst, A., van Steenbergen, M.J., Akeroyd, N.,
van Nostrum, C.F., Schoenmakers, P.J., Hennink, W.E., 2006.
Molar-mass characterization of cationic polymers for gene
delivery by aqueous size-exclusion chromatography. Pharm.
Res. 23, 595–603.
Kim, T.I., Seo, H.J., Choi, J.S., Yoon, J.K., Baek, J.U., Kim, K., Park,
J.S., 2005. Synthesis of biodegradable cross-linked
poly(beta-amino ester) for gene delivery and its modification,
inducing enhanced transfection efficiency and stepwise
degradation. Bioconjug. Chem. 16, 1140–1148.
Cho, Y.H., Liu, F., Kim, J.-S., Cho, Y.K., Park, J.S., Kim, S.W., 1998.
Polyethylene glycol-grafted poly-l-lysine as polymeric gene
carrier. J. Control. Rel. 54, 39–48.
Cho, K.C., Kim, S.H., Jeong, J.H., Park, T.G., 2005. Folate
receptor-mediated gene delivery using folate-poly(ethylene
glycol)-poly(l-lysine) conjugate. Macromol. Biosci. 5, 512–
519.
Christensen, L.V., Chang, C.W., Kim, W.J., Kim, S.W., Zhong, Z.,
Lin, C., Engbersen, J.F.J., Feijen, J., 2006. Reducible poly(amido