C O MMU N I C A T I O N S
Table 2. Effect of Solvent on Organocatalyzed R-Chlorination
corresponding syn adduct with high fidelity. These transformations
clearly demonstrate the synthetic advantages of catalyst-enforced
induction versus substrate directed stereocontrol.
entry
solvent
time (h)
% conversiona
%eeb
1
2
3
4
5
6
EtOAc
THF
toluene
CH3CN
CHCl3
acetone
12
18
18
8
8
7
93
56
83
65
91
93
87
89
89
92
92
92
a
Conversion determined by GLC analysis of product relative to an
b
internal standard (benzyl methyl ether). Enantiomeric excess determined
by chiral GLC analysis (Bodman Γ-TA).
Table 3. Enantioselective R-Chlorination: Substrate Scope
In summary, we have described the first direct, enantioselective
R-chlorination of aldehydes. Importantly, the chlorinated quinone
1
and both enantiomers of catalyst 3 are bench stable and
commercially available. Further studies to evaluate the mechanism
of this process, expand the scope, and utilize the R-chloroaldehydes
via in situ functionalization are now underway. Finally, it should
be noted that the imidazolidinone scaffold has revealed itself to be
a broadly useful catalyst for enantioselective synthesis within the
realms of both iminium activation4 and now enamine catalysis.
,8
Acknowledgment. Financial support was provided by kind gifts
from Bristol-Myers Squibb, Eli Lilly, and Merck Research Labo-
ratories. D.W.C.M is grateful for support from the Sloan Foundation
and Research Corporation. Teresa Beeson is thanked for additional
enantioselectivity analysis.
Supporting Information Available: Experimental procedures,
structural proofs, and spectral data for all new compounds (PDF). This
material is available free of charge via the Internet at http://pubs.acs.org.
References
(
1) Elegant work on R-halogenation: (a) Wack, H.; Taggi, A. E.; Hafez, A.
M.; Drury, W. J., III; Lectka, T. J. Am. Chem. Soc. 2001, 123, 1531. (b)
Hafez, A. M.; Taggi, A. E.; Wack, H.; Esterbrook, J., III; Lectka, T. Org.
Lett. 2001, 3, 2049. Lewis acid-catalyzed asymmetric halogenation of
â-keto esters: (c) Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. 2000,
3
9, 4359. (d) Hintermann, L.; Togni, A. HelV. Chim. Acta 2000, 83, 2425.
Auxiliary-based route to R-chloroimides: (e) Evans, D. A.; Ellman, J.
A.; Dorow, R. L. Tetrahedron Lett. 1987, 28, 1123.
2) Thomas, G. Medicinal Chemistry: An Introduction; J. Wiley & Sons:
New York, 2000.
(
(
3) (a) March, J. AdVanced Organic Chemistry: Reactions, Mechanisms and
Structure, 4th ed.; John Wiley & Sons: New York, 1992. (b) House, H.
Modern Synthetic Reactions, 2nd ed.; W. A. Benjamin: New York, 1972.
(c) De Kimpe, N.; Verh e´ , R. The Chemistry of R-Haloketones, R-Haloal-
dehydes, and R-Haloimines; John Wiley & Sons: New York, 1990.
4) Diels-Alder: (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J.
Am. Chem. Soc. 2000, 122, 4243. (b) Northrup, A. B.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2002, 124, 2458. Nitrone cycloaddition: (c) Jen,
W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000,
(
122, 9874. Pyrrole substitution: (d) Paras, N. A.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2001, 123, 4370. Indole substitution: (e) Austin, J. F.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172. Aniline
substitution: (f) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc.
2002, 124, 7894. Mukaiyama-Michael reaction: (g) Brown, S. P.;
Goodwin, N. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125,
a
Enantiomeric excess determined by chiral GLC analysis (Bodman
b
Γ-TA). Determined by analysis of the crude reaction prior to purification.
c
d
Using 20 mol % catalyst and -40 °C. Enantiomeric excess determined
1
192. Direct aldehyde-aldehyde aldol: (h) Northrup, A. B.; MacMillan,
by GLC analysis of the corresponding epoxide generated by NaBH4
D. W. C. J. Am. Chem. Soc. 2002, 124, 6798.
reduction and exposure to aqueous KOH. e Performed at -40 °C.
(
5) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2003, 125, 10808.
(
6) Two groups have reported similar studies: (a) Zhong, G. Angew. Chem.
We next examined the ability of catalyst 3 to override the inherent
bias of resident stereogenicity in the chlorination of enantiopure
â-chiral aldehydes. As shown in eqs 3 and 4, exposure of
enantiopure (S)-3-phenylbutyraldehyde to catalyst antipode (R)-3
results in the diastereoselective production of the anti R,â-
disubstituted isomer, while the catalyst antipode (S)-3 affords the
2
003, 115, 4379. (b) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M.
Tetrahedron Lett. 2003, 44, 8293.
(
7) Iatrobeads 6RS-8060 from Iatron Laboratories, Inc., 11-4 Higashi-Kanda
1-Chrome, Chiyoda-Ku, Tokyo 101, Japan.
(8) 4+3 cycloaddition: Harmata, M.; Ghosh, S. K.; Hong, X.; Wacharasindhu,
S.; Kirchhoefer, P. J. Am. Chem. Soc. 2003, 125, 2058.
JA049562Z
J. AM. CHEM. SOC.
9
VOL. 126, NO. 13, 2004 4109