Organometallics
ARTICLE
Academy of Sciences of Czech Republic, vvi, using Gaussian 09, Revision
B.01.21 The geometry optimization of the molecule was done using the
B3LYP functional and the 6-31G(d,p) basis set for all atoms. The
Hessian required for the geometry optimization was computed analy-
tically before the first step of the optimization stage. The NMR shielding
tensor was calculated using the GIAO method22 carried out on the
optimized geometry and using the mPW1PW91 functional along with
the 6-311þG(2d,p) basis set.
(7) Mach, K., Unpublished observation.
(8) (a) Lee, J. B.; Gajda, G. J.; Schaefer, W. P.; Howard, T. R.; Ikariya,
T.; Straus, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 1981, 103, 7358–7361.
(b) Ikariya, T.; Ho, S. C. H.; Grubbs, R. H. Organometallics 1985,
4, 199–200. (c) Finch, W. C.; Anslyn, E. V.; Grubbs, R. H. J. Am. Chem.
Soc. 1988, 110, 2406–2413.
(9) (a) Luinstra, G. A.; Teuben, J. H. J. Chem. Soc., Chem. Commun.
1990, 1470–1471. (b) Luinstra, G. A.; Vogelzang, J.; Teuben, J. H.
Organometallics 1992, 11, 2273–2281. (c) Pinkas, J.; Císaꢀrovꢁa, I.;
ꢀ
Gyepes, R.; Horꢁaꢀcek, M.; Kubiꢀsta, J.; Cejka, J.; Gꢁomez-Ruiz, S.; Hey-
’ ASSOCIATED CONTENT
Hawkins, E.; Mach, K. Organometallics 2008, 27, 5532–5547.
(10) (a) Tebbe, F. N.; Parshall, G. W.; Ovenall, D. W. J. Am. Chem.
Soc. 1979, 101, 5074–5075. (b) Howard, T. R.; Lee, J. B.; Grubbs, R. H.
J. Am. Chem. Soc. 1980, 102, 6876–6878. (c) Lee, J. B.; Ott, K. C.;
Grubbs, R. H. J. Am. Chem. Soc. 1982, 104, 7491–7496. (d) Anslyn, E. V.;
Grubbs, R. H. J. Am. Chem. Soc. 1987, 109, 4880–4890.
(11) (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc.
1978, 100, 3611–3613. (b) Klabunde, U.; Tebbe, F. N.; Parshall, G. W.;
Harlow, R. L. J. Mol. Catal. 1980, 8, 37–51. (c) Ott, K. C.; Lee, J. B.;
Grubbs, R. H. J. Am. Chem. Soc. 1982, 104, 2942–2944.
(12) The [TiCl2Cp2]/2LiMe system producing [TiMe2Cp2] has
been found to generate [Ti(dCH2)Cp2] at mild temperatures
(50ꢀ70 °C), being relatively air- and water-stable. As such, it is more
convenient than Tebbe reagent for organic synthesis application: (a)
Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392–6394. (b)
Petasis, N. A.; Bzowej, E. I. Tetrahedron Lett. 1993, 34, 1721. (c) Petasis,
N. A.; Fu, D.-K. Organometallics 1993, 12, 3776–3780. (d) Berget, P. E.;
Schore, N. E. Organometallics 2006, 25, 552–553.
1
S
Supporting Information. Figures giving the H NMR
b
(500 MHz) spectrum of 2, 13C NMR spectrum (relaxation delay
58 s) of 2, gCOSY, gHSQC, and gHMBC spectra of 2, correla-
tion of observed and calculated δC values for 2, 1H NMR (300
MHz) spectrum of 3, 1DTOCSY, gHSQC, and gHMBC spectra
of 3, 1H NMR spectra of thermolyzed 1 in C6D6 in a sealed NMR
tube at 100 °C, H, 13C{1H}, gCOSY, gHSQC, and gHMBC
1
spectra of a mixture of products (1, 14%; 2, 20%; 4, 66%) after
heating 1 in C6D6 to 100 °C for 10 h, and 1DTOCSY spectra of
4. This material is available free of charge via the Internet at
’ ACKNOWLEDGMENT
This research was supported by the Grant Agency of the
Academy of Sciences of the Czech Republic (Grant No.
IAA400400708) and the Ministry of Education, Youth and
Sports (Project No. LC06070). J.K. is grateful to the Grant
Agency of the Czech Republic (Project No. 203/09/P276).
(13) Gibson, C. P.; Dabbagh, G.; Bertz, S. H. J. Chem. Soc., Chem.
Commun. 1988, 603–605.
(14) Synthesis by benzylation of decamethyltitanocene η3-allyl
cation: (a) Tjaden, E. B.; Casty, G. L.; Stryker, J. M. J. Am. Chem. Soc.
1993, 115, 9814–9815. Synthesis by free radical alkylation of η3-allyl
decamethyltitanocene: (b) Casty, G. L.; Stryker, J. M. J. Am. Chem. Soc.
1995, 117, 7814–7815.
’ REFERENCES
ꢀ
(15) Obtained from [TiCl2Cp*2] and 2Li(CHdCH2): (a) Beck-
haus, R.; Thiele, K.-H.; Str€ohl, D. J. Organomet. Chem. 1989, 369, 43–54.
(b) Beckhaus, R.; Sang, J.; Wagner, T.; Ganter, B. Organometallics 1996,
15, 1176–1187.
(16) (a) Hawkins, J. M.; Grubbs, R. H. J. Am. Chem. Soc. 1988,
110, 2821–2823. (b) Buchwald, S. L.; Grubbs, R. H. J. Am. Chem. Soc.
1983, 105, 5490–5491.
(1) For Ti: (a) Horꢁaꢀcek, M; Stꢀepniꢀcka, P.; Gyepes, R.; Císaꢀrovꢁa, I.;
Tiꢀslerovꢁa, I.; Zemꢁanek, J.; Kubiꢀsta, J.; Mach, K. Chem.Eur. J. 2000,
6, 2397–2408. (b) Lukeꢀsovꢁa, L.; Stꢀepniꢀcka, P.; Fejfarovꢁa, K.; Gyepes, R.;
ꢀ
Císaꢀrovꢁa, I.; Horꢁaꢀcek, M.; Kubiꢀsta, J.; Mach, K. Organometallics 2002,
21, 2639–2653. For Zr and Hf: (c) Warren, T. H.; Erker, G.; Fr€ohlich, R.;
Wibbeling, B. Organometallics 2000, 19, 127–134. For Zr: (d) Licht,
A. I.; Alt, H. G. J. Organomet. Chem. 2002, 648, 134–148.
(2) For Ti: (a) Sato, K.; Nishihara, Y.; Huo, S.; Xi, Z.; Takahashi, T.
J. Organomet. Chem. 2001, 633, 18–26. For Zr: (b) Takahashi, T.; Xi, Z.;
Nishihara, Y.; Huo, S.; Kasai, K.; Aoyagi, K.; Denisov, V.; Negishi, E.
Tetrahedron 1997, 53, 9123–9134. (c) Takahashi, T.; Seki, T.; Nitto, Y.;
Saburi, M.; Rousset, C. J.; Negishi, E. J. Am. Chem. Soc. 1991,
113, 6266–6268. For Hf: (d) Negishi, E.; Holms, S. J.; Tour, J. M.;
Miller, J. A.; Cederbaum, F. E.; Swanson, D. R.; Takahashi, T. J. Am.
Chem. Soc. 1989, 111, 3336–3346. (e) Nishihara, Y.; Ishida, T.; Huo, S.;
Takahashi, T. J. Organomet. Chem. 1997, 547, 209–216.
(17) Upton, T. H.; Rappꢁe, A. K. J. Am. Chem. Soc. 1985, 107, 1206–
1218 and references therein.
(18) For reviews see: (a) Takeda, T. In Titanium and Zirconium in
Organic Synthesis; Marek, I., Ed.; Wiley-VCH: Weinheim, Germany,
2002; pp 475ꢀ500. (b) Petasis, N. A. In Transition Metals for Organic
Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, Germany,
2004; pp 427ꢀ447.
(19) Antropiusovꢁa, H.; Dosedlovꢁa, A.; Hanuꢀs, V.; Mach, K. Transi-
tion Met. Chem. (London) 1981, 6, 90–93.
(20) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.;
Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organome-
tallics 2010, 29, 2176–2179.
(21) Frisch, M. J. et al. Gaussian 09, Revision B.01; Gaussian, Inc.,
Wallingford, CT, 2010.
(3) Okuda, J.; du Plooy, K. E.; Toscano, P. J. J. Organomet. Chem.
1995, 495, 195–202.
(4) (a) Bercaw, J. E.; Brintzinger, H. H. J. Am. Chem. Soc. 1971,
93, 2045–2046. (b) Bercaw, J. E.; Marvich, R. H.; Bell, L. G.; Brintzinger,
H. H. J. Am. Chem. Soc. 1972, 94, 1219–1238. (c) McDade, C.; Green,
J. C.; Bercaw, J. E. Organometallics 1982, 1, 1629–1634. (d) Pinkas, J.;
Císaꢀrovꢁa, I.; Conde, A.; Fandos, R.; Horꢁaꢀcek, M.; Kubiꢀsta, J.; Mach, K.
J. Organomet. Chem. 2009, 694, 1971–1980.
(22) Ditchfield, R. Mol. Phys. 1974, 27, 789–807.
(5) (a) Rausch, M. D.; Boon, W. H.; Alt, H. G. J. Organomet. Chem.
1977, 141, 299–312. (b) Samuel, E.; Maillard, P.; Giannotti, C.
J. Organomet. Chem. 1977, 142, 289–298. (c) Alt, H. G.; Rausch,
M. D. J. Am. Chem. Soc. 1974, 96, 5936–5937.
(6) (a) Shur, V. B.; Bernadyuk, S. Z.; Burlakov, V. V.; Andrianov,
V. G.; Yanovsky, A. I.; Struchkov, Yu. T.; Volpin, M. E. J. Organomet.
Chem. 1983, 243, 157–163. (b) Burlakov, V. V.; Polyakov, A. V.;
Yanovsky, A. I.; Struchkov, Yu. T.; Volpin, M. E.; Rosenthal, U.; G€orls,
H. J. Organomet. Chem. 1994, 476, 197–206.
2586
dx.doi.org/10.1021/om2001487 |Organometallics 2011, 30, 2581–2586