Organic Letters
Letter
Scheme 4. Mechanistic Rationale
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the NSFC (No. 21532001) and the
International Joint Research Centre for Green Catalysis and
Synthesis, Gansu Provincial Sci. & Tech. Department (No.
2016B01017), for financial support.
REFERENCES
■
(
1) Palacios, F.; Alonso, C.; Santos, J. Chem. Rev. 2005, 105, 899−
932.
(2) (a) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassall, C. H.;
Holmes, S. W.; Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. Nature
1
978, 272, 56−58. (b) Maier, L.; Diel, P. J. Phosphorus, Sulfur Silicon
Relat. Elem. 1996, 109, 341−344.
3) (a) Zygmunt, J.; Gancarz, R.; Lejczak, B.; Wieczorek, P.;
(
corresponding imine I, which tautomerized quickly to a more
stable enamine intermediate II for the strong electron
absorption effect of phosphonate. The bismuth catalyst may
prompt this rearrangement in parallel through two possible
pathways: (a) coordination stabilization of imine I or (b)
driving enamine II to imine tautomerization with a proton
transfer via N−Bi interactions. Subsequently, a tandem 2-aza-
Cope rearrangement proceeded efficiently with the assistance
of bismuth(III) under heating, furnishing the corresponding β-
aminophosphonate 3 as a mixture of erythro- and threo-
diastereomers. In the second step, TS-A and TS-B may serve as
the transition states for the two diastereomers, and (±)-threo-3
Kafarski, P. Bioorg. Med. Chem. Lett. 1996, 6, 2989−2992. (b) Tao,
M.; Bihovsky, R.; Wells, G. J.; Mallamo, J. P. J. Med. Chem. 1998, 41,
3912−3916. (c) Van der Veken, P.; Senten, K.; Haemers, A.;
Augustyns, K. Tetrahedron Lett. 2003, 44, 969−972.
(4) (a) Whitteck, J. T.; Ni, W.; Griffin, B. M.; Eliot, A. C.; Thomas,
P. M.; Kelleher, N. L.; Metcalf, W. W.; van der Donk, W. A. Angew.
Chem., Int. Ed. 2007, 46, 9089−9092. (b) Hakimelahi, G. H.;
Jarrahpour, A. A. Helv. Chim. Acta 1989, 72, 1501−1505.
(5) Stowasser, B.; Budt, K. H.; Qi, L. J.; Peyman, A.; Ruppert, D.
Tetrahedron Lett. 1992, 33, 6625−6628.
(6) Representative examples for the synthesis of β-aminophospho-
nates: (a) Chen, J.; Wen, X.; Wang, Y.; Du, F.; Cai, L.; Peng, Y. Org.
Lett. 2016, 18, 4336−4339. (b) Hashimoto, T.; Maruoka, K. J. Am.
Chem. Soc. 2007, 129, 10054−10055. (c) Park, H.; Cho, C.-W.;
Krische, M. J. J. Org. Chem. 2006, 71, 7892−7894. (d) Zhang, J.; Li,
Y.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2011, 50, 11743−11747.
(
product A) was generated from a less hindered transition state
TS-A, thus providing (±)-threo-3 as the major diastereomers.
In summary, we have disclosed a general protocol for one-
pot synthesis of β-aminophosphonates from simple aldehydes
and amines under bismuth(III) catalysis. The reaction
proceeds through a tandem enamine/imine tautomerism and
(
e) Zhou, M.; Xue, Z.-J.; Cao, M.; Dong, X.-Q.; Zhang, X.-M. Org.
Biomol. Chem. 2016, 14, 4582−4584. (f) Li, Y.-H.; Wang, C.-H.; Gao,
S.-Q.; Qi, F.-M.; Yang, S.-D. Chem. Commun. 2019, 55, 11888−
1
1891. (g) Wang, Y.; Wang, W.; Tang, R.-Y.; Liu, Z.-H.; Tao, W.-H.;
2
-aza-Cope rearrangement sequence, providing a variety of
Fang, Z.-X. Org. Biomol. Chem. 2018, 16, 7782−7786. (h) Cai, Y.; Lu,
Y.-C.; Yu, C.-B.; Lyu, H.-R.; Miao, Z.-W. Org. Biomol. Chem. 2013, 11,
allylic substituted β-aminophosphonates with good yields.
5
491−5499.
ASSOCIATED CONTENT
sı Supporting Information
(7) For applications and conversions of imines, see: (a) Tang, S.-J.;
Zhang, X.; Sun, J.-Y.; Niu, D.-W.; Chruma, J. Chem. Rev. 2018, 118,
■
*
1
0393−10457. (b) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M.
Chem. Rev. 2011, 111, 2626−2704. (c) Zhu, L.-H.; Wang, D.-H.; Jia,
Z.-B.; Lin, Q.-F.; Huang, M.-X.; Luo, S.-Z. ACS Catal. 2018, 8, 5466−
5484. (d) Flisak, Z.; Sun, W.-H. ACS Catal. 2015, 5, 4713−4724.
(e) Desai, A. A.; Ren, H.; Mukherjee, M.; Wulff, D. Org. Process Res.
Dev. 2011, 15, 1108−1115. (f) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park,
H.; Yu, J.-Q. Science 2016, 351, 252−256.
(8) Nagy, P. I.; Fabian, W. M. F. J. Phys. Chem. B 2006, 110, 25026−
25032.
■
(
9) Basa, P. N.; Bhowmick, A.; Horn, L. M.; Sykes, A. G. Org. Lett.
012, 14, 2698−2701.
10) Focante, F.; Camurati, I.; Nanni, D.; Leardini, R.; Resconi, L.
Organometallics 2004, 23, 5135−5141.
11) (a) Li, H.-X.; Hall, M. B. ACS Catal. 2015, 5, 1895−1913.
b) Gunanathan, C.; Milstein, D. Chem. Rev. 2014, 114, 12024−
2087.
(12) Liu, J.; Yang, X.; Zuo, Z.; Nan, J.; Wang, Y.; Luan, X. Org. Lett.
018, 20, 244−247.
13) (a) Zhu, C.; Saito, K.; Yamanaka, M.; Akiyama, T. Acc. Chem.
Shang-Dong Yang − State Key Laboratory of Applied Organic
Chemistry, Lanzhou University, Lanzhou 730000, P. R. China;
State Key Laboratory for Oxo Synthesis and Selective
Oxidation, Lanzhou Institute of Chemical Physics, Chinese
2
(
(
(
1
2
(
Ming Jin − State Key Laboratory of Applied Organic Chemistry,
Lanzhou University, Lanzhou 730000, P. R. China
Shi-fu Yin − State Key Laboratory of Applied Organic
Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
Res. 2015, 48, 388−398. (b) Ouellet, S. G.; Walji, A. M.; Macmillan,
D. W. C. Acc. Chem. Res. 2007, 40, 1327−1339.
(
14) For transition-metal-mediated 2-aza-Cope rearrangement
reactions, see: (a) Overman, L. E.; Humphreys, P. G. Organic
Reactions 2011, 75, 747−820. (b) Overman, L. E. Acc. Chem. Res.
1992, 25, 352−359. (c) Fiedler, D.; Bergman, R. G.; Raymond, K. N.
Angew. Chem., Int. Ed. 2004, 43, 6748−6751. (d) Kuang, J.-Q.;
D
Org. Lett. XXXX, XXX, XXX−XXX