Organic & Biomolecular Chemistry
Communication
Weinheim, 2006; (b) D. Enders, C. Grondal and
M. R. Hüttl, Angew. Chem., Int. Ed., 2007, 46, 1570;
(c) M. Ruiz, P. Lopez-Alvarado, G. Giorgi and
J. C. Menendez, Chem. Soc. Rev., 2011, 40, 3445;
(d) H. Pellissier, Adv. Synth. Catal., 2012, 354, 237.
2 (a) D. D’Alonzo, A. Guaragna and G. Palumbo, Curr. Org.
Chem., 2009, 13, 71; (b) D. D’Alonzo, A. Guaragna and
G. Palumbo, Curr. Med. Chem., 2009, 16, 473;
(c) D. D’Alonzo, A. Guaragna and G. Palumbo, Chem. Bio-
diversity, 2011, 8, 373.
3 A. Guaragna, S. Pedatella and G. Palumbo, in e-Encyclopedia
of Reagents for Organic Synthesis, ed. L. A. Paquette, John
Wiley & Sons, New York, 2008.
4 (a) A. Guaragna, S. D’Errico, D. D’Alonzo, S. Pedatella and
G. Palumbo, Org. Lett., 2007, 9, 3473; (b) A. Guaragna,
D. D’Alonzo, C. Paolella and G. Palumbo, Tetrahedron Lett.,
2009, 50, 2045.
5 A. Guaragna, D. D’Alonzo, C. Paolella, C. Napolitano and
G. Palumbo, J. Org. Chem., 2010, 75, 3558.
6 D. R. Buckle, S. J. Collier and M. D. McLaws, in e-Encyclope-
dia of Reagents for Organic Synthesis, ed. L. A. Paquette,
John Wiley & Sons, New York, 2005 and references cited
therein.
7 (a) A. Guaragna, C. Napolitano, D. D’Alonzo, S. Pedatella
and G. Palumbo, Org. Lett., 2006, 8, 4863; (b) D. D’Alonzo,
A. Guaragna, C. Napolitano and G. Palumbo, J. Org. Chem.,
2008, 73, 5636.
8 (a) D. D’Alonzo, A. Van Aerschot, A. Guaragna, G. Palumbo,
G. Schepers, S. Capone, J. Rozenski and P. Herdewijn,
Chem.–Eur. J., 2009, 15, 10121; (b) D. D’Alonzo,
A. Guaragna, A. Van Aerschot, P. Herdewijn and
G. Palumbo, J. Org. Chem., 2010, 75, 6402; (c) D. D’Alonzo,
J. Amato, G. Schepers, M. Froeyen, A. Van Aerschot,
P. Herdewijn and A. Guaragna, Angew. Chem., Int. Ed., 2013,
52, 6662–6665.
mediated double elimination. However, 16 was not stable
enough for further synthetic manipulations.
12 M. Albert, D. De Souza, P. Feiertag and H. Hönig, Org. Lett.,
2002, 4, 3251 and references cited therein.
13 D. M. Burness, Org. Synth., 1973, 5, 403.
14 An alternative numbering to IUPAC rules was employed to
more conveniently identify the carbon atoms that will sub-
sequently belong to carbohydrate-mimicking rings.
15 (a) P. Merino, Chemical Synthesis of Nucleoside Analogues,
John Wiley & Sons, Inc., Hoboken, New Jersey, 2013;
(b) G. Oliviero, S. D’Errico, N. Borbone, J. Amato,
V. Piccialli, G. Piccialli and L. Mayol, Eur. J. Org. Chem.,
2010, 1517; (c) S. D’Errico, G. Oliviero, N. Borbone,
J. Amato, D. D’Alonzo, V. Piccialli, L. Mayol and G. Piccialli,
Molecules, 2012, 17, 13036; (d) G. N. Roviello, A. Ricci,
E. M. Bucci and C. Pedone, Mol. BioSyst., 2011, 7, 1773.
16 H. Hayakawa, S. Kohgo, K. Kitano, N. Ashida, E. Kodama,
H. Mitsuya and H. Ohrui, Antiviral Chem. Chemother., 2004,
15, 169.
17 Deoxynucleosides (especially dC analogues) are known to
exert antiviral/antitumor activity in both enantiomeric
forms (ref. 9), thus a screening of the racemic mixture will
provide an early information on the biological potential of
both stereoisomeric compounds.
18 Contrarily to previous results (see ref. 7b), no over-
reduction product was found in this case.
19 Relative stereochemistry was assigned by comparison of
the unprotected β-nucleoside with literature data:
M. Petrová, M. Buděšínský, E. Zborníková, P. Fiedler and
I. Rosenberg, Org. Lett., 2011, 13, 4200.
9 C. Mathé and G. Gosselin, Antiviral Res., 2006, 71, 276.
10 As we were interested to preliminarily explore the reactivity
of our synthon 1 rather than to directly use it for medicinal
chemistry applications, 8 was synthesized in racemic form.
In some cases, the configuration of stereocentres is arbitra-
rily defined to display the relative stereochemistry of the
newly formed stereocentres. Study of the synthetic con-
ditions enabling preparation of 8 and/or that of the follow-
ing intermediates in enantiopure form is ongoing.
20 N-Glycosidation of 11α at 60 °C provided furan 29 (formed
via nucleoside 28):
11 Replacing MeOH with H2O, an even more unexpected reac- 21 This finding was inspired by a recent report on DMF-
tivity occurred, leading to furfural 16 (83%). Analogous to
Scheme 3, the reaction was supposed to proceed through
formation of bis-hemiacetal 14, then undergoing H3O+-
mediated α-O-glycosidation: S.-R. Lu, Y.-H. Lai, J.-H. Chen,
C.-Y. Liu and K.-K. T. Mong, Angew. Chem., Int. Ed., 2011,
123, 7453.
This journal is © The Royal Society of Chemistry 2013
Org. Biomol. Chem., 2013, 11, 7825–7829 | 7829