Table 1 Preparative scale hydrocarbon oxidation using UHP–TFA
Fig. 2 Oxidation of cyclohexane by UHP–TFA in absence (2) or presence
(5) (1 mol%) of dirhodium tetraacetate, and oxidation of cyclohexane-d12
(.), where [A]0 is the initial concentration of cyclohexane.
In the work of Deno et al. using 30% aqueous H2O2 in
TFA,11,14 it was assumed that the active oxidant was peroxytri-
fluoroacetic acid which participated in a concerted oxidation
mechanism via a cyclic transition state, the electrophilic nature
of the oxidant being further enhanced by protonation (Scheme
2). To shed further light on the mechanism of the UHP–TFA
oxidation, we compared the rate of oxidation of cyclohexane
with its perdeuterated analogue (k = 1.4 3 1025 M21 s21) (Fig.
2). The observed kinetic isotope effect of 2.3 ± 0.2 is in accord
with previous studies using peracids as oxidants, and is possibly
indicative of a concerted (cf. Scheme 2) or oxenoid type
mechanism.3a Unfortunately alternative mechanisms involving
radical hydrogen abstractions cannot be completely ruled out,
since although such reactions usually exhibit a significantly
larger deuterium isotope effect (kH/kD ≈ 4–8),15 the isotope
effect can be as low as 1.16
The preparative oxidation of hydrocarbons was briefly
investigated, and some illustrative examples are shown in Table
1. Cyclohexane, cycloheptane (k = 6.4 3 1025 M21 s21) and
cyclooctane were all oxidized to the corresponding esters;
norbornane gave the ester of exo-norborneol as the major
product, and although adamantane was rapidly oxidized to the
tertiary ester, with no sign of the secondary ester by GC, the
product was unstable under the reaction conditions. n-Hexane
gave a mixture of 2- and 3-hexyl trifluoroacetates (ratio =
47 53) with no evidence for oxidation at the terminal methyl
group. Compounds containing aromatic rings (n-propylben-
zene, cumene, tetralin) were completely decomposed in either
30% aqueous H2O2–TFA or in UHP–TFA.17
catalysts, and therefore claims of metal catalysis of related
reactions in TFA should be viewed with caution.
This work was supported by the EPSRC.
Notes and references
1 For recent reviews: O. Reiser, Angew. Chem., Int. Ed. Engl., 1994, 33,
69; B. A. Arndtsen, R. G. Bergman, T. A. Mobley and T. H. Peterson,
Acc. Chem. Res., 1995, 28, 154.
2 G. A. Olah, D. G. Parker and N. Yoneda, Angew. Chem., Int. Ed. Engl.,
1978, 17, 909.
3 (a) H.-J. Schneider and W. Muller, J. Org. Chem., 1985, 50, 4609; (b)
G. Asensio, R. Mello, M. E. Gonzalez-Nunez, G. Castellano and J.
Corral, Angew. Chem., Int. Ed. Engl., 1996, 35, 217; (c) R. Mello, M.
Florentino, C. Fusco and R. Curci, J. Am. Chem. Soc., 1989, 111, 6749;
(d) A. Bravo, H. R. Bjorsvik, F. Fontana, F. Minisci and A. Serri, J. Org.
Chem., 1996, 61, 9409; (e) A. Arnone, S. Foletto, P. Metrangolo, M.
Pregnolato and G. Resnati, Org. Lett., 1999, 1, 281.
4 D. H. Giamalva, D. F. Church and W. A. Pryor, J. Org. Chem., 1988, 53,
3429.
5 B. Meunier, Chem. Rev., 1992, 92, 1411.
6 A. E. Shilov and G. B. Shul’pin, Chem. Rev., 1997, 97, 2879.
7 D. H. R. Barton and D. Doller, Acc. Chem. Res., 1992, 25, 504.
8 R. T. Buck, D. M. Coe, M. J. Drysdale, C. J. Moody and N. D. Pearson,
Tetrahedron Lett., 1998, 39, 7181; C. J. Moody, S. Miah, A. M. Z.
Slawin, D. J. Mansfield and I. C. Richards, Tetrahedron, 1998, 54,
9689.
9 K. Nomura and S. Uemura, J. Chem. Soc., Chem. Commun., 1994,
129.
10 A. Sen, Acc. Chem. Res., 1998, 31, 550.
In summary, we have shown that UHP–TFA is a simple
system for the oxidation of unactivated C–H bonds in alkanes;
such reactions are not accelerated by rhodium or ruthenium
11 N. C. Deno and L. A. Messer, J. Chem. Soc., Chem. Commun., 1976,
1051.
12 S. Murahashi, Y. Oda, N. Komiya and T. Naota, Tetrahedron Lett.,
1994, 35, 7953.
13 T. Hogan and A. Sen, J. Am. Chem. Soc., 1997, 119, 2642.
14 N. C. Deno, E. J. Jedziniak, L. A. Messer, M. D. Meyer, S. G. Stroud and
E. S. Tomezsko, Tetrahedron, 1977, 33, 2503.
15 S. Murahashi, Y. Oda, T. Naota and T. Kuwabara, Tetrahedron Lett.,
1993, 34, 1299; A. S. Goldstein, R. H. Beer and R. S. Drago, J. Am.
Chem. Soc., 1994, 116, 2424; Z. Wan and W. S. Jenks, J. Am. Chem.
Soc., 1995, 117, 2667.
16 B. Singh, J. R. Long, F. F. deBiani, D. Gatteschi and P. Stavropoulos, J.
Am. Chem. Soc., 1997, 119, 7030.
17 Cf. N. C. Deno, B. A. Greigger, L. A. Messer, M. D. Meyer and S. G.
Stroud, Tetrahedron Lett., 1977, 1703.
Scheme 2
1312
Chem. Commun., 2000, 1311–1312