1422
Russ. Chem. Bull., Int. Ed., Vol. 68, No. 7, July, 2019
Meshcheryakova et al.
the gradual formation of crystalline complex 4. The reaction
mixture was kept at room temperature for 2 h to achieve more
complete precipitation of the product. The product was sepa-
rated from the mother liquor by decantation and dried under
reduced pressure. The yield of analytically pure complex 4 was
0.196 g (72%). Found (%): C, 67.62; H, 9.38. C34H56N2O4Ti.
Calculated (%): C, 67.53; H, 9.33. IR, /cm–1: 1477 s, 1440 s,
1397 s, 1351 s, 1313 m, 1281 s, 1258 s, 1248 s, 1232 m, 1203 m,
1169 w, 1155 w, 1144 m, 1121 m, 1103 w, 1065 m, 1049 w, 1019 m,
1013 w, 1001 w, 986 m, 953 m, 938 m, 925 m, 827 s, 811 s, 794 m,
778 v.s, 729 v.s, 691 v.s, 674 v.s, 648 s, 604 w, 586 w, 567 s, 551 m,
531 m, 501 m. 1H NMR (400 MHz, CDCl3, 20 C), : 1.24
(s, 36 H, But); 3.40 (s, H, H2CTMEDA); 3.55 (s, H, MeTMEDA);
6.77 (s, 4 H, CHcatechol).
ment parameters for nonhydrogen atoms. The hydroxyl hydrogen
atom in complex 2 was found in a difference Fourier map and
refined isotropically. The other hydrogen atoms of complexes
1—4 were positioned geometrically and refined isotropically with
fixed thermal parameters U(H)iso = 1.2U(C)eq (U(H)iso = 1.5U(C)eq
for the methyl groups).
Selected geometric parameters of complexes 1—4 are given
in Tables 1—4, respectively. The crystallographic data and the
X-ray diffraction data collection and structure refinement statis-
tics are given in Table 5. The structures were deposited with the
Cambridge Crystallographic Data Centre (CCDC 1879922 (1),
1879923 (2), 1879924 (3), 1879925 (4)) and are available at ccdc.
cam.ac.uk/structures.
This study was financially supported by the Russian
Science Foundation (Project No. 17-13-01428). The
spectroscopic and structural studies of the compounds
were performed using equipment of the Analytical Center
of the G. A. Razuvaev Institute of Organometallic Chem-
istry of the Russian Academy of Sciences.
B. Synthesis of bis(3,6-di-tert-butylcatecholato)(1,2-dimeth-
oxyethane)titanium(IV), 3,6-Cat2Ti(DME) (5). Compound 5 was
synthesized by the procedure described above for complex 4. The
starting reagents were used in the following amounts: 0.2 g
(0.9 mmol) of 3,6-CatH2 and 0.15 mL (0.45 mmol) of Ti(OBu)4.
Then DME (0.5 mL) was added to the resulting solution in
hexane (15 mL). The brown crystalline precipitate that formed
was isolated as described above. The yield of the analytically pure
product was 0.164 g (63%). Found (%): C, 66.64; H, 8.77.
References
C32H50O6Ti. Calculated (%): C, 66.43; H, 8.71. IR, /cm–1
:
1552 m, 1482 m, 1422 m, 1365 s, 1310 w, 1283 m, 1262 w, 1242 m,
1202 m, 1181 w, 1141 w, 1101 m, 1036 m, 1029 m, 981 s, 954 m,
939 m, 924 w, 869 m, 831 m, 812 m, 800 m, 715 s, 704 s, 682 m,
651 s, 619 w, 589 m, 552 s, 526 w, 501 s, 493 s, 474 w. 1H NMR
(200 MHz, (CD3)2CO, 20 C), : 1.25 (s, 36 H, But); 3.27 (s, 6 H,
CH3O (DME)); 3.45 (s, 4 H, CH2 (DME)); 6.39 (s, 4 H,
CHcatechol).
1. D. Peri, S. Meker, M. Shavit, E. Y. Tshuva, Chem. Eur. J.,
2009, 15, 2403.
2. A. Tzubery, E. Y. Tshuva, Inorg. Chem., 2012, 51, 1796.
3. S. L. Hancock, R. Gati, M. F. Mahon, E. Y. Tshuva, M. D.
Jones, Dalton Trans., 2014, 43, 1380.
4. T. J. Boyle, L. J. Tribby, T. M. Alam, S. D. Bunge, G. P.
Holland, Polyhedron, 2005, 24, 1143.
5. J. B. Benedict, Ph. Coppens, J. Am. Chem. Soc., 2010,
132, 2938.
6. J. Hou, Q. Zhang, Yu. Wua, Yu. Liu, L. Du, Ch.-Ho Tung,
Yi. Wang, Inorg. Chim. Acta, 2016, 443, 279—283.
7. J. Hou, J. Hu, Q. Sun, G. Zhang, Ch.-Ho Tung, Yi. Wang,
Inorg. Chem., 2016, 55, 7075.
8. Sh. Yang, Hu-Ch. Su, J.-Le Hou, W. Luo, D.-H. Zou, Q.-Yu
Zhu, J. Dai, Dalton Trans., 2017, 46, 9639.
9. K. Gigant, A. Rammal, M. Henry, J. Am. Chem. Soc., 2001,
123, 11632.
10. M. G. Davidson, M. D. Jones, M. D. Lunn, M. F. Mahon,
Inorg. Chem., 2006, 45, 2282.
11. T. A. Bazhenova, N. V. Kovaleva, G. V. Shilov, G. N. Petrova,
D. A. Kuznetsov, Eur. J. Inorg. Chem., 2016, 5215.
12. A. J. Nielson, J. M. Waters, Eur. J. Inorg. Chem., 2015, 2028.
13. T. G. Larocque, G. G. Lavoie, J. Organomet. Chem., 2012,
715, 26.
14. V. A. Tuskaev, S. Ch. Gagieva, D. A. Kurmaev, I. V. Fedyanin,
S. V. Zubkevich, B. M. Bulychev, Russ. Chem. Bull., 2018,
67, 377.
15. I. V. Smolyaninov, A. I. Poddel´sky, S. A. Smolyaninova,
S. A. Luzhnova, N. T. Berberova, Russ. Chem. Bull., 2015,
64, 2223.
16. I. V. Smolyaninov, O. V. Pitikova, A. I. Poddel´sky, N. T.
Berberova, Russ. Chem. Bull., 2018, 67, 1857.
17. B. A. Borgias, S. R. Cooper, Y. B. Koh, K. N. Raymond,
Inorg. Chem., 1984, 23, 1009.
C. Synthesis of bis(3,6-di-tert-butylcatecholato)(2,2´-bipyrid-
yl)titanium(IV), 3,6-Cat2Ti(bipy) (6). Compound 6 was synthe-
sized by the procedure described above for complex 4. The
starting reagents were used in the following amounts: 0.2 g
(0.9 mmol) of 3,6-CatH2 and 0.15 mL (0.45 mmol) of Ti(OBu)4.
Then bipy (0.07 g, 0.45 mmol) was added to the resulting solution
in hexane (15 mL). The maroon finely crystalline precipitate that
formed was isolated as described above. The yield of the anal-
ytically pure product was 0.258 g (89%). Found (%): C, 70.98;
H, 7.65. C38H48N2O4Ti. Calculated (%): C, 70.80; H, 7.51. IR,
/cm–1: 1601 m, 1574 w, 1567 w, 1485 m, 1447 s, 1394 s, 1357 m,
1315 m, 1283 m, 1259 m, 1245 s, 1232 w, 1204 w, 1174 w, 1143 w,
1062 w, 1045 w, 1028 m, 982 s, 958 w, 940 m, 923 w, 853 w,
812 m, 798 s, 766 s, 733 s, 714 s, 695 s, 650 m, 638 w, 613 w, 586 m,
567 s, 550 m, 504 s, 475 m, 465 m. 1H NMR (200 MHz,
(CD3)2CO, 20 C), : 1.21 (s, 36 H, But); 6.40 (s, 4 H,
CHcatechol); 7.97 (m, 2 H, C(5)H (bipy)); 8.42 (m, 2 H,
C(4)H (bipy)); 8.68 (m, 2 H, C(3)H (bipy)); 9.37 (m, 2 H,
C(6)H (bipy)).
X-ray diffraction studies of 1—4. Single crystals suitable for
X-ray diffraction were grown from Et2O (1—3) or a hexane—
Et2O—THF mixture (1 : 1 : 0.1) (4). The X-ray diffraction data
sets for complexes 1—4 were collected on Agilent Xcalibur E (1)
and Bruker D8 Quest (2—4) diffractometers (-scanning tech-
nique, Mo-K radiation, = 0.71073 Å, T = 100 K). The in-
tensity data were measured and integrated, absorption corrections
were applied, and the structures were refined using the CrysAlis
Pro,40 APEX3,41 SADABS,42 and SHELX program packages.43
The structures were solved by direct methods and refined by the
full-matrix least squares based on F 2hkl with anisotropic displace-
18. C. Chaumont, P. Mobian, M. Henry, Dalton Trans., 2014, 43, 1.
19. K. J. Blackmore, M. B. Sly, M. R. Haneline, J. W. Ziller,
A. F. Heyduk, Inorg. Chem., 2008, 47, 10522.