BULLETIN OF THE
Article
Pyrene-Tagged Alcoholic Ionic Liquids as Phase Transfer Catalysts
KOREAN CHEMICAL SOCIETY
7. (a) S. S. Shinde, S. N. Patil, A. Ghatge, P. Kumar, New
J. Chem. 2015, 39, 4368. (b) J.-W. Lee, M. T. Oliveira, H. B.
Jang, S. Lee, D. Y. Chi, D. W. Kim, C. E. Song, Chem. Soc.
Rev. 2016, 45, 4638.
O
HO
N
5
O
HO
N
5
-
N
s
M
O
N
-
s
OM
8. (a) J. Fraga-Dubreuil, K. Bourahla, M. Rahmouni, J. P.
Bazureau, J. Hamelin, Catal. Commun. 2002, 3, 185.
(b) H. P. Zhu, F. Yang, J. Tang, M. Y. He, Green Chem.
2003, 5, 38. (c) D. Fang, X. Zhou, Z. Ye, Z. Liu, Ind. Eng.
Chem. Res. 2006, 45, 7982.
OH
rGO (100 mg)
25 oC, 1 h,
CH2Cl2
HO
rGO@PTIL1
O
HO
PTIL1 grafting = 0.37 mmol/g
O
OH
PTIL1
9. A. Zhu, T. Jiang, D. Wang, B. Han, L. Liu, J. Huang, J.
Zhang, D. Sun, Green Chem. 2005, 7, 514.
10. T. Ogoshi, T. Onodera, T. Yamagishi, Y. Nakamoto, Macro-
molecules 2008, 41, 8533.
Scheme 2. Grafting of PTIL1 onto the graphitic surface.
11. (a) H. Wang, P. Cui, G. Zou, F. Yang, J. Tang, Tetrahedron
2006, 62, 3985. (b) S. Liu, C. Xie, S. Yu, F. Liu, Catal.
Commun. 2008, 9, 2030.
12. (a) A. R. Hajipour, F. Rafiee, A. E. Ruoho, Synth. Commun.
2006, 36, 2563. (b) A. C. Chaskar, S. R. Bhandari, A. B.
Patil, O. P. Sharma, S. Mayeker, Synth. Commun. 2009,
39, 366.
indicated the beneficial noncovalent interaction of a
graphene with pyrene moiety for ILs separation from the
reaction mixture by simple filtration.
Conclusion
13. J. R. Harjani, S. J. Nara, M. M. Salunkhe, Tetrahedron Lett.
2002, 43, 1127.
14. D. W. Kim, C. E. Song, D. Y. Chi, J. Am. Chem. Soc. 2002,
121, 10278.
In conclusion, we have designed and developed oligoether-
functionalized pyrene-tagged PTIL1 that act as highly efficient
multifunctional organocatalysts for nucleophilic fluorination.
This PTIL1 catalyst was demonstrated that a wide range of
substrates can be successfully fluorinated under defined reac-
tion condition. This PTC system could significantly enhance
the reactivity of MFs. Moreover, the synergistic effect of PTIL
catalyst with protic t-alcohol solvent allowed the fluorination
to proceed highly chemoselectively. In particular, the pyrene
moiety of PTIL1 played crucial roles in enhancing the rate of
reaction and in separation of catalyst through noncovalent
interaction. We strongly believe that this catalytic system, in
combination with its efficiency in fluorinated reactions for dif-
ferent substrates, may inspire future research in the field of
organic synthesis and catalytic engineering.
15. (a) V. H. Jadhav, H.-J. Jeong, S. T. Lim, M.-H. Sohn, D. W.
Kim, Org. Lett. 2011, 13, 2502. (b) J.-W. Lee, H. Yan, H. B.
Jang, H. K. Kim, S. W. Park, S. Lee, D. Y. Chi, C. E. Song,
Angew. Chem. Int. Ed. 2009, 48, 7683.
16. D. W. Kim, D. Y. Chi, Angew. Chem. Int. Ed. 2004, 43, 483.
17. D. O’Hagan, Chem. Soc. Rev. 2008, 37, 308.
18. (a) T. Hiyama, Organofluorine Compounds; Chemistry and
Applications, Springer, New York, 2000. (b) P. A.
Champagne, J. Desroches, J.-D. Hamel, M. Vandamme, J.-F.
Paquin, Chem. Rev. 2015, 115, 9073.
19. J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem.
Rev. 2014, 114, 2432.
20. (a) P. Jeschke, Pest Manag. Sci. 2010, 66, 10. (b) T.
Fujiwara, D. O’Hagan, J. Fluor. Chem. 2014, 167, 16.
21. R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger,
Chem. Soc. Rev. 2011, 40, 3496.
Acknowledgments. This work was supported by an Inha
University Research Grant (Grant No. INHA-60620).
22. (a) M. Tredwell, V. Gouverneur, Angew. Chem. Int. Ed.
2012, 51, 11426. (b) T. Furuya, A. S. Kamlet, T. Ritter,
Nature 2011, 473, 470.
23. S. M. Ametamey, M. Honer, P. A. Schubiger, Chem. Rev.
2008, 108, 1501.
Supporting Information. Additional supporting informa-
tion may be found online in the Supporting Information
section at the end of the article.
24. D. O’Hagan, H. Deng, Chem. Rev. 2015, 115, 634.
25. (a) D. A. Dougherty, Science 1996, 271, 163. (b) G. K.
Fukin, S. V. Lindeman, J. K. Kochi, J. Am. Chem. Soc. 2002,
124, 8329.
26. A. Taher, K. C. Lee, H. J. Han, D. W. Kim, Org. Lett. 2017,
19, 3342.
27. (a) G. Liu, B. Wu, J. Zhang, X. Wang, M. Shao, J. Wang,
Inorg. Chem. 2009, 48, 2383. (b) S. Sabater, J. A. Mata, E.
Peris, ACS Catal. 2014, 4, 2038. (c) S. Sabater, J. A. Mata, E.
Peris, Organometallics 2015, 34, 1186.
References
1. L. A. Blanchard, D. Hancu, E. J. Beckman, J. F. Brennecke,
Nature 1999, 399, 28.
2. X. Han, D. W. Armstrong, Acc. Chem. Res. 2007, 40, 1079.
3. M. E. V. Valkenburg, R. L. Vaughn, M. Williams, J. S.
Wilkes, Thermochim. Acta 2005, 425, 181.
4. F. Zhou, Y. M. Liang, W. M. Liu, Chem. Soc. Rev. 2009,
38, 2590.
5. M. Galinski, A. Lewandowski, I. Stepniak, Electrochim. Acta
2006, 51, 5567.
6. T. Welton, Chem. Rev. 1999, 99, 2071.
28. S. Cicchi, P. Fabbrizzi, G. Ghini, A. Brandi, P. Foggi, A.
Marcelli, R. Righini, C. Botta, Chem. Eur. J. 2009,
15, 754.
Bull. Korean Chem. Soc. 2020
© 2020 Korean Chemical Society, Seoul & Wiley-VCH GmbH
6