C
W. Xie et al.
Letter
Synlett
In summary, we have successfully developed an electro-
chemical bromination of electron-rich aromatic rings using
stoichiometric Bu4NBr under undivided cell. This reaction
could be carried out at room temperature without the use
of any catalysts, oxidants or additives. This process offers an
alternative to conventional methods that require chemical
oxidants and represents an environmentally benign tool for
regioselective oxidative C–Br bonds formation.
Br
Br
Br
C
C
Me
Me
n
nBu4NBr (1.5 equiv)
CH2Cl2, rt, 5 h
N
N
Me
Me
1x
2x, 42%
constant current = 5 mA
Scheme 2 Electrochemical bromination of compound 1x
Control experiments showed that red-brown Br2 was
generated on the surface of the anode and the solution be-
came yellow in color when nBu4NBr was directly electrolysis
under the standard conditions (Scheme 3, a). Moreover, the
solution remains colorless when radical scavenger P(OEt)3
was added, suggesting that a radical process should be in-
volved for formation of Br2 (Scheme 3, b). Indeed, only 8%
yield of product 2a was isolated when P(OEt)3 was added in
our system (Scheme 3, c).
Funding Information
This work was supported by the Sci-Tech Development Project of Jilin
Province in China (No. 20160520039JH), the Foundation of Jilin Edu-
cational Committee (No. JJKH20180244KJ), and the Norman Bethune
Program of Jilin University (No. 2015330). Additional support was
provided by Changchun Discovery Sciences, Ltd.()
Acknowledgment
We thank Mr. Xuyang Luo for NMR measurements.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References and Notes
(1) (a) Gribble, G. W. Chem. Soc. Rev. 1999, 28, 335. (b) Tang, M. L.;
Bao, Z. Chem. Mater. 2011, 23, 446. (c) Wilcken, R.;
Zimmermann, M. O.; Lange, A.; Joerger, A. C.; Boeckler, F. M.
J. Med. Chem. 2013, 56, 1363. (d) Petrone, D. A.; Ye, J.; Lautens,
M. Chem. Rev. 2016, 116, 8003.
Scheme 3 Control experiments
(2) (a) Weix, D. J. Acc. Chem. Res. 2015, 48, 1767. (b) Ruiz-Castillo,
P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.
(3) Kolvari, E.; Koukabi, N.; Khoramabadi-zad, A.; Shiri, A.; Zolfigol,
M. A. Curr. Org. Synth. 2013, 10, 837.
(4) Rogers, D. A.; Brown, R. G.; Brandeburg, Z. C.; Ko, E. Y.; Hopkins,
M. D.; LeBlanc, G.; Lamar, A. A. ACS Omega 2018, 3, 12868.
(5) (a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117,
13230. (b) Hou, Z.-W.; Mao, Z.-Y.; Xu, H.-C. Synlett 2017, 28,
1867. (c) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27. (d) Jiang, Y.;
Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485. (e) Xie, W.; Liu, N.;
Gong, B.; Ning, S.; Che, X.; Cui, L.; Xiang, J. Eur. J. Org. Chem.
2019, 2498.
Based on the observations above and literature re-
ports,11,19 a possible mechanism for the electrochemical
bromination reaction was proposed (Scheme 4). As a start,
the Br– anions were oxidized on the anode to Br2. The reac-
tion of Br2 with compound 1 afforded the aryl bromide 2
with the regeneration of Br– anion for the next cycle. Thus,
n
stoichiometric Bu4NBr is sufficient for full conversion of
the aromatic substrates. The slow generation of Br2 in situ is
important for highly regioselective bromination of aromatic
substrates in our strategy.
(6) (a) Fuchigami, T.; Inagi, S. Chem. Commun. 2011, 47, 10211.
(b) Yin, B.; Wang, L.; Inagi, S.; Fuchigami, T. Tetrahedron 2010,
66, 6820. (c) Stevanović, D.; Damljanović, I.; Vukićević, M.;
Manojlović, N.; Radulović, N. S.; Vukićević, R. D. Helv. Chim. Acta
2011, 94, 1406. (d) Lyalin, B. V.; Petrosyan, V. A.; Ugrak, B. I.
Russ. Chem. Bull. 2009, 58, 291. (e) Kulangiappar, K.; Karthik, G.;
Kulandainathan, M. A. Synth. Commun. 2009, 39, 2304. (f) Raju,
T.; Kulangiappar, K.; Kulandainathan, M. A.; Uma, U.; Malini, R.;
Muthukumaran, A. Tetrahedron Lett. 2006, 47, 4581. (g) Kataoka,
K.; Hagiwara, Y.; Midorikawa, K.; Suga, S.; Yoshida, J.-i. Org.
Process Res. Dev. 2008, 12, 1130. (h) Midorikawa, K.; Suga, S.;
Yoshida, J.-i. Chem. Commun. 2006, 0, 3794. (i) Sun, L.; Zhang, X.;
Li, Z.; Ma, J.; Zeng, Z.; Jiang, H. Eur. J. Org. Chem. 2018, 4949.
anode
cathode
e
e
(1)
R
Ar
Br
R
Ar
H2
Br2
– H+, – Br–
– 2e–
(2)
2Br–
2H+
Scheme 4 Proposed mechanism
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–D