Scheme 1 Synthesis of pyrophosphate linkages in a ball mill.
Thus, in the presence of MgCl
2
(H
2
O)
6
, tetrazole and water,
Notes and references
enhanced rates and intermolecular selectivity of the phosphate
coupling reaction were observed. Moderate to high yields were
observed for the preparation of other dinucleoside polyphos-
phates (3b–d), nicotinamide adenine dinucleotide (NAD - 3e)
and adenosine diphosphate ribose (ADPR – 3f). Side-products
arising from hydrolysis of 1 to AMP (2a) accompanied by the
1
e.g. A. G. McLennan, L. D. Barnes, G. M. Blackburn, C. Brenner,
A. Guranowski, A. D. Miller, J. M. Rovira, P. Rotllan, B. Soria, J. A.
Tanner and A. Sillero, Drug Dev. Res., 2001, 52, 249–259.
+
2 (a) J. Baddiley and A. R. Todd, J. Chem. Soc., 1947, 648–651; (b) A.
Todd, Science, 1958, 127, 787–792; (c) G. M. Blackburn, M.-J. Guo
and A. G. McLennan, in Ap A and Other Dinucleoside Polyphosphate,
4
ed. A. G. McLennan, CRC Press, Boca Raton, 1992.
production of Ap
12–31%).
The mobile-phase gradients developed for both analytical and
preparative scale HPLC enabled the separation of all components
and purification of the products could therefore be completed
within 150 min. Lyophilisation of the solutions removed both
the water and volatile salts to yield the pure products as
their triethylammonium salts. Again, this procedure is much
faster than typical ion-exchange chromatography using DEAE
Sephadex.
In conclusion, we have developed atom-economic methodology
for pyrophosphate bond formation using stable, inexpensive and
commercially-available reagents which does not require the use of
anhydrous, non-volatile and toxic solvents, which is compatible
with the synthesis of natural or modified linkages and which
enables rapid and facile isolation of pure materials.
2
A (3a) were also observed at varying levels
3 J. G. Moffatt and H. G. Khorana, J. Am. Chem. Soc., 1961, 83, 649–658.
4
(a) A. Adam and J. G. Moffatt, J. Am. Chem. Soc., 1966, 88, 838–842;
(
(
b) J. Lee, H. Churchil, W. B. Choi, J. E. Lynch, F. E. Roberts, R. P.
Volante and P. J. Reider, Chem. Commun., 1999, 729–730.
5
(a) T. C. Myers, K. Nakamura and J. W. Flesher, J. Am. Chem. Soc.,
1963, 85, 3292–3295; (b) I. B. Yanachkov, E. J. Dix, M. I. Yanachkova
and G. E. Wright, Org. Biomol. Chem., 2011, 9, 730–738; (c) T. C. Lin
and J. M. Fang, Tetrahedron Lett., 2011, 52, 2232–2234; (d) Q. W. Han,
B. L. Gaffney and R. A. Jones, Org. Lett., 2006, 8, 2075–2077.
6 e.g. Q. Dai, M. Saikia, N. S. Li, T. Pan and J. A. Piccirilli, Org. Lett.,
009, 11, 1067–1070.
2
7
8
9
P. Bal a´ zˇ , Mechanochemistry in Nanoscience and Minerals Engineering,
Springer-Verlag Berlin, Heidelberg, 2008, pp. 1–102.
A. Stolle, T. Szuppa, S. E. S. Leonhardt and B. Ondruschka, Chem.
Soc. Rev., 2011, 40, 2317–2329 and references cited therein.
(a) N. Giri, C. Bowen, J. S. Vyle and S. L. James, Green Chem., 2008,
1
2
0, 627–628; (b) F. Ravalico, S. L. James and J. S. Vyle, Green Chem.,
011, 13, 1778–1783; (c) C. Hardacre, H. F. Huang, S. L. James, M. E.
Migaud, S. E. Norman and W. R. Pitner, Chem. Commun., 2011, 47,
5846–5848; (d) S. A. Sikchi and P. G. Hultin, J. Org. Chem., 2006, 71,
5
888–5891.
0 R. W. Chambers and H. G. Khorana, J. Am. Chem. Soc., 1958, 80,
749–3752.
1 M. Shimazu, K. Shinozuka and H. Sawai, Tetrahedron Lett., 1990, 31,
35–238.
2 V. Wittmann and C. H. Wong, J. Org. Chem., 1997, 62, 2144–2147.
1
1
1
3
Acknowledgements
2
This work has been funded by the School of Chemistry and
Chemical Engineering, QUB and DEL NI.
13 T. Fri sˇ cˇ i c´ and W. Jones, J. Pharm. Pharmacol., 2010, 62, 1547–1559.
This journal is © The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 6496–6497 | 6497